151 research outputs found

    Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation

    Get PDF
    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the northwest hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities’ long-term survival

    Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective

    Get PDF
    Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia

    Reproductive Ecology and Severe Pollen Limitation in the Polychromic Tundra Plant, Parrya nudicaulis (Brassicaceae)

    Get PDF
    Pollen limitation is predicted to be particularly severe in tundra habitats. Numerous reproductive patterns associated with alpine and arctic species, particularly mechanisms associated with reproductive assurance, are suggested to be driven by high levels of pollen limitation. We studied the reproductive ecology of Parrya nudicaulis, a species with relatively large sexual reproductive investment and a wide range of floral pigmentation, in tundra habitats in interior montane Alaska to estimate the degree of pollen limitation. The plants are self-compatible and strongly protandrous, setting almost no seed in the absence of pollinators. Supplemental hand pollinations within pollinator exclusion cages indicated no cage effect on seed production. Floral visitation rates were low in both years of study and particularly infrequent in 2010. A diversity of insects visited P. nudicaulis, though syrphid and muscid flies composed the majority of all visits. Pollen-ovule ratios and levels of heterozygosity are consistent with a mixed mating system. Pollen limitation was severe; hand pollinations increased seed production per plant five-fold. Seed-to-ovule ratios remained low following hand pollinations, indicating resource limitation is likely to also be responsible for curtailing seed set. We suggest that pollen limitation in P. nudicaulis may be the result of selection favoring an overproduction of ovules as a bet-hedging strategy in this environmental context of highly variable pollen receipt

    Oxygen deprivation stress in a changing environment

    Get PDF
    Past research into flooding tolerance and oxygen shortages in plants has been motivated largely by cultivation problems of arable crops. Unfortunately, such species are unsuitable for investigating the physiological and biochemical basis of anoxia-tolerance as selection has reduced any tolerance of anaerobiosis and anaerobic soil conditions that their wild ancestors might have possessed, Restoration of anoxia-tolerance to species that have lost this property is served better by physiological and molecular studies of the mechanisms that are employed in wild species that still possess long-term anoxia-tolerance. Case studies developing these arguments are presented in relation to a selection of crop and wild species, The flooding sensitivity and metabolism of maize is compared in relation to rice in its capacity for anaerobic germination, The sensitivity of potato to flooding is related to its disturbed energy metabolism and inability to maintain functioning membranes under anoxia and post-inoxia, By contrast, long-term anoxia-tolerance in the American cranberry (Vaccinium macrocarpon) and the arctic grass species Deschampsia beringensis can be related to the provision and utilization of carbohydrate reserves. Among temperate species, the sweet flag (Acorus calamus) shows a remarkable tolerance of anoxia in both shoots and roots and is also able to mobilize carbohydrate and maintain ATP levels during anoxia as well as preserving membrane lipids against anoxic and post-anoxic injury. Phragmites australis and Spartina alterniflora, although anoxia-tolerant, are both sulphide-sensitive species which can pre-dispose them to the phenomenon of die-back in stagnant, nutrient-rich water. Glyceria maxima adapts to flooding through phenological adaptations with a seasonal metabolic tolerance of anoxia confined to winter and spring which, combined with a facility for root aeration and early spring growth, allows rapid colonization of sites with only shallow flooding. The diversity of responses to flooding in wild plants suggests that, depending on the life strategy and habitat of the species, many different mechanisms may be involved in adapting plants to survive periods of inundation and no one mechanism on its own is adequate for ensuring survival
    corecore