429 research outputs found

    Antiretroviral therapy and liver disease progression in HIV and hepatitis C co-infected patients : a systematic review and meta-analysis

    Get PDF
    Background: HIV co-infection exacerbates hepatitis C disease, increasing the risk of cirrhosis and hepatitis C-related mortality. Combination antiretroviral therapy (cART) is the current standard treatment for co-infected individuals, but the impact of cART and antiretroviral (ARV) monotherapy on liver disease in this population is unclear. We aimed to assess the effect of cART and ARV monotherapy on liver disease progression and liver-related mortality in individuals co-infected with HIV and chronic hepatitis C. Methods: A systematic review with meta-analyses was conducted. MEDLINE and EMBASE bibliographic databases were searched up to September 2015. Study quality was assessed using a modified Newcastle-Ottawa scale. Results were synthesised narratively and by meta-analysis. Results: Fourteen observational studies were included. In analyses that adjusted for potential confounders, risk of liver-related mortality was significantly lower in patients receiving cART (hazard ratio/odds ratio 0.31, 95 % CI 0.14 to 0.70). Results were similar in unadjusted analyses (relative risk 0.40, 95 % CI 0.29 to 0.55). For outcomes where metaanalysis could not be performed, results were less consistent. Some studies found cART was associated with lower incidence of, or slower progression of liver disease, fibrosis and cirrhosis, while others showed no evidence of benefit. We found no evidence of liver-related harm from cART or ARV monotherapy compared with no HIV therapy. Conclusions: cART was associated with significantly lower liver-related mortality in patients co-infected with HIV and HCV. Evidence of a positive association between cART and/or ARV monotherapy and liver-disease progression was less clear, but there was no evidence to suggest that the absence of antiretroviral therapy was preferable. Keywords: Systematic review, Meta-analysis, Anti-retroviral agents, Hepatitis C, HI

    A 'real puzzle': the views of patients with epilepsy about the organisation of care

    Get PDF
    BACKGROUND: Little is known about how individuals who have a diagnosis of epilepsy have experienced healthcare services or their views about how they should best be organised to meet their ongoing needs. METHODS: Focus group interviews. Individuals with epilepsy were identified in 5 practices in Wales: 90 were invited, 40 confirmed attendance and 19 individuals attended interviews in 5 groups of size 6, 5, 4, 3 and 1 (Table 2). Inclusion criteria: individuals with a confirmed diagnosis of epilepsy, aged between 18–65. The exclusion criteria were learning disability or an inability to travel to interview locations. RESULTS: The individuals in these group interviews were not 'epilepsy activists' yet they remained critical in extended discussions about the services encountered during their patient careers, wanting more information and advice about how to adapt to problems, particularly after initial diagnosis, more involvement in decision making, rapid access to expertise, preferably local, and improved communication between clinicians. A central concern was the tendency for concerns to be silenced, either overtly, or covertly by perceived haste, so that they felt marginalised, despite their own claims to own expert personal knowledge. CONCLUSIONS: Users of existing services for epilepsy are critical of current systems, especially the lack of attention given to providing information, psychosocial support and the wishes of patients to participate in decision making. Any reorganisation of services for individuals with epilepsy should take into account these perceived problems as well as try to reconcile the tension between the distant and difficult to access expertise of specialists and the local but unconfident support of generalists. The potential benefit of harnessing information technology to allow better liaison should be investigated

    Protein Kinase C Iota Regulates Pancreatic Acinar-to-Ductal Metaplasia

    Get PDF
    Pancreatic acinar-to-ductal metaplasia (ADM) is associated with an increased risk of pancreatic cancer and is considered a precursor of pancreatic ductal adenocarcinoma. Transgenic expression of transforming growth factor alpha (TGF-α) or K-rasG12D in mouse pancreatic epithelium induces ADM in vivo. Protein kinase C iota (PKCÎč) is highly expressed in human pancreatic cancer and is required for the transformed growth and tumorigenesis of pancreatic cancer cells. In this study, PKCÎč expression was assessed in a mouse model of K-rasG12D-induced pancreatic ADM and pancreatic cancer. The ability of K-rasG12D to induce pancreatic ADM in explant culture, and the requirement for PKCÎč, was investigated. PKCÎč is elevated in human and mouse pancreatic ADM and intraepithelial neoplastic lesions in vivo. We demonstrate that K-rasG12D is sufficient to induce pancreatic ADM in explant culture, exhibiting many of the same morphologic and biochemical alterations observed in TGF-α-induced ADM, including a dependence on Notch activation. PKCÎč is highly expressed in both TGF-α- and K-rasG12D-induced pancreatic ADM and inhibition of PKCÎč significantly reduces TGF-α- and K-rasG12D-mediated ADM. Inhibition of PKCÎč suppresses K-rasG12D–induced MMP-7 expression and Notch activation, and exogenous MMP-7 restores K-rasG12D–mediated ADM in PKCÎč-depleted cells, implicating a K-rasG12D-PKCÎč-MMP-7 signaling axis that likely induces ADM through Notch activation. Our results indicate that PKCÎč is an early marker of pancreatic neoplasia and suggest that PKCÎč is a potential downstream target of K-rasG12D in pancreatic ductal metaplasia in vivo

    CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression

    Get PDF
    CHD7 is one of nine members of the chromodomain helicase DNA–binding domain family of ATP–dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP–Seq) to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP–seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7+/+, Chd7+/−, and Chd7−/− ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES–specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation

    Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    Get PDF
    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage

    Get PDF
    Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
    • 

    corecore