304 research outputs found

    L’anthropologie du tourisme et l’authenticité. Catégorie analytique ou catégorie indigène ?

    Get PDF
    Cette note critique présente un panorama rétrospectif de la manière dont la notion d'authenticité a été conceptualisée et utilisée par des anthropologues observant des phénomènes touristiques. Elle analyse en particulier l'ambiguïté de cette notion qui est en même temps un concept mobilisé par les chercheurs et une catégorie indigène utilisée par les touristes. Elle interroge les liens entre les procédures d'authentification mises en œuvre par les anthropologues et les conditions de reconnaissances par les touristes de l'authenticité d'une relation, d'une situation ou d'une expérience.This paper gives a retrospective view of the way in which the notion of authenticity has been constructed and employed by anthropologists observing tourism phenomena. Particular emphasis is given to analysing the ambiguity of this notion, evoked as a research concept and also used by tourists. The links between processes of authentication used by anthropologists and the attempts by tourists to authenticate relationships, situations and experiences are also examined

    TPOS2020 : Tropical Pacific Observing System for 2020

    Get PDF
    This paper presents the new international TPOS2020 project: why it has been established, what are its scientific objectives, its proposed organization, governance, and what the expected outcomes are. It is aiming at informing Coriolis, Mercator Océan, and the operational oceanography communities, all concerned, and involved in generating interest and contributions to the project. Building upon its scientific activities in the Pacific and the surrounding countries, the French community is willing to take an active role in this international project. The TPOS 2020 Project is a focused, finite term project, which began in 2014 and will be completed in 2020. It will evaluate, and where necessary provide guidance, to change all elements that contribute to the Tropical Pacific Observing System (TPOS) based on a modern understanding of tropical Pacific science. Learning lessons from the great success-and finally partial collapse- of the TAO/TRITON array, the project objective is to build a renewed, integrated, internationally-coordinated and sustainable observing system in the Tropical Pacific, meeting both the needs of climate research and operational forecasting systems. The scientific objectives are: - To redesign and refine the TPOS to observe El Niño Southern Oscillation (ENSO) and advance scientific understanding of its causes, - To determine the most efficient and effective observational solutions to support prediction systems for ocean, weather and climate services, - To advance understanding of tropical Pacific physical and biogeochemical variability and predictability. TPOS2020 is coordinated by a steering committee with task teams and working groups working on specific aspects of the observing system. Since much of the use and benefit of TPOS data will be achieved through model assimilation and syntheses, the operational modeling centers are considered key partners. The TPOS2020 project also opens partnerships with other global ocean observing communities: the meteorological community, and the coastal and regional ocean communities. TPOS 2020 embraces the integration of complementary sampling technologies; it will consider the different observing system components as an integrated whole, targeting robustness and sustainability, along with a developed governance and coordination

    Effects of increased isopycnal diffusivity mimicking the unresolved equatorial intermediate current system in an earth system climate model

    Get PDF
    Earth system climate models generally underestimate dissolved oxygen concentrations in the deep eastern equatorial Pacific. This problem is associated with the "nutrient trapping" problem, described by Najjar et al. [1992], and is, at least partially, caused by a deficient representation of the Equatorial Intermediate Current System (EICS). Here we emulate the unresolved EICS in the UVic earth system climate model by locally increasing the zonal isopycnal diffusivity. An anisotropic diffusivity of ∼50,000 m 2 s-1 yields an improved global representation of temperature, salinity and oxygen. In addition, it (1) resolves most of the local "nutrient trapping" and associated oxygen deficit in the eastern equatorial Pacific and (2) reduces spurious zonal temperature gradients on isopycnals without affecting other physical metrics such as meridional overturning or air-sea heat fluxes. Finally, climate projections of low-oxygenated waters and associated denitrification change sign and apparently become more plausibl

    Collaboration between pre-service teachers at different levels: what kind of mechanism for what kind of impact in terms of professional development in science?

    Full text link
    editorial reviewedAfin de pallier la difficulté, pour les enseignants, d’implémenter un enseignement des sciences mobilisant une démarche de recherche menée par les élèves, nous avons mis en place, dans le cadre de leur formation initiale, un dispositif de communauté d’apprentissage faisant collaborer des futurs enseignants du préscolaire et du secondaire supérieur. Nous y avons accolé un dispositif de recherche qui a permis, dans un premier temps, la régulation du dispositif de formation et, dans un second temps, d’identifier des retombées en termes de développement professionnel telles que, par exemple, un élargissement du répertoire de pratiques ou une vision plus systémique du métier

    Observed Characteristics and Vertical Structure of Mesoscale Eddies in the Southwest Tropical Pacific

    Get PDF
    In the Southwest Pacific Ocean, waters transit from the subtropical gyre before being redistributed equatorward and poleward. While the mean pathways are known, the contribution to the mixing and transport of the water from mesoscale eddies has not been comprehensively investigated. In this research, satellite altimetry data, combined with an eddy detection and tracking algorithm is used to investigate the distribution and surface characteristics of mesoscale eddies in this region of complex bathymetry (10°S–30°S, 140°E–190°E). Detected eddies are then colocalized with in situ data from Argo floats to determine their vertical structure and the effect of eddies on the water masses. The numerous islands affect the eddy behavior as most eddies are formed in the lee of islands, propagate westward and decay when encountering shallow bathymetry. Eddies are sparse and short‐lived in the tropical area north of Fiji, impacting only the top 200 meters of water. They do not appear to be able to trap and transport waters in this region. In the Coral Sea, a region of lateral shear between currents transporting waters of different origins, eddies are more numerous and energetic. They affect the water properties down to at least 500 m depth, and anticyclonic eddies trap water to ∼200 m, contributing to the upper thermocline waters mixing and transport. South of New Caledonia, mesoscale eddies are ubiquitous, with typical lifetimes longer than 5 months. They affect the temperature, salinity, and velocities down to ∼1,000 m depth, and weakly contribute to the mixing of lower thermocline waters

    Tropical Pacific observing system

    Get PDF
    This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs
    corecore