29 research outputs found

    A Study of Implementation Methodologies for Distributed Real Time Collaboration

    Get PDF
    Collaboration drives our world and is almost unavoidable in the programming industry. From higher education to the top technological companies, people are working together to drive discovery and innovation. Software engineers must work with their peers to accomplish goals daily in their workplace. When working with others there are a variety of tools to choose from such as Google Docs, Google Colab and Overleaf. Each of the aforementioned collaborative tools utilizes the Operational Transform (OT) technique in order to implement their real time collaboration functionality. Operational transform is the technique seen amongst most if not all major collaborative tools in our industry today. However, there is another way of implementing real time collaboration through a data structure called Conflict-free Replicated Data Type (CRDT) which has made claims of superiority over OT. Previous studies have taken place with the focus on comparing the theory behind OT and CRDT\u27s, but as far as we know, there have not been studies which compare real time collaboration performance using an OT implementation versus a CRDT implementation in a popularly used product such as Google Docs or Overleaf. Our work will focus on comparing OT and CRDT\u27s real time collaborative performance in Overleaf, an academic authorship tool, which allows for easy collaboration on academic and professional papers. Overleaf\u27s current published version implements real time collaboration using operational transform. This thesis will contribute an analysis of the current real time collaboration performance of operational transform in Overleaf, an implementation of CRDT\u27s for real time collaboration in Overleaf and an analysis of the performance of real time collaboration through the CRDT implementation in Overleaf. This thesis describes the main advantages and disadvantages of OT vs CRDTs, as well as, to our knowledge, the first results of a non-theoretical attempt at implementing CRDTs for handling document edits in a collaborative environment which was originally operating using an OT implementation

    Genotype and sex-based host variation in behavior and susceptibility drives population disease dynamics

    Get PDF
    Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus as a model system, we integrated experimental measurements of social aggregation, virus shedding, and disease-induced mortality from different genetic lines and sexes into a disease modelling framework. The experimentally measured host heterogeneity produced substantial differences in simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease dynamics at a population level. While this was true for homogeneous populations of single sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, viral shedding and mortality, we compared simulations where we allowed these traits to vary, as measured experimentally, to simulations where we constrained variation in these traits to the population mean. In this context, variation in infectiousness, followed by social aggregation, was the most influential component of transmission. Overall, we show that host heterogeneity in three host traits dramatically affects population-level transmission, but the relative impact of this variation depends on both the susceptible population diversity and the distribution of population-level variation

    Digital interventions to address mental health needs in colleges: Perspectives of student stakeholders

    Get PDF
    OBJECTIVE: The need for clinical services in U.S. colleges exceeds the supply. Digital Mental health Interventions (DMHIs) are a potential solution, but successful implementation depends on stakeholder acceptance. This study investigated the relevance of DMHIs from students\u27 perspectives. METHODS: In 2020-2021, an online cross-sectional survey using mixed methods was conducted with 479 students at 23 colleges and universities. Respondents reported views and use of standard mental health services and DMHIs and rated the priority of various DMHIs to be offered through campus services. Qualitative data included open-ended responses. FINDINGS: Among respondents, 91% reported having experienced mental health problems, of which 91% reported barriers to receiving mental health services. Students highlighted therapy and counseling as desired and saw flexible access to services as important. With respect to DMHIs, respondents had the most experience with physical health apps (46%), mental health questionnaires (41%), and mental well-being apps (39%). Most were unaware of or had not used apps or self-help programs for mental health problems. Students were most likely to report the following DMHIs as high priorities: a crisis text line (76%), telehealth (66%), websites for connecting to services (62%), and text/messaging with counselors (62%). They considered a self-help program with coach support to be convenient but some also perceived such services to be possibly less effective than in-person therapy. CONCLUSIONS: Students welcome DMHIs on campus and indicate preference for mental health services that include human support. The findings, with particular focus on characteristics of the DMHIs prioritized, and students\u27 awareness and perceptions of scalable DMHIs emphasized by policymakers, should inform schools looking to implement DMHIs

    Using host traits to predict reservoir host species of rabies virus

    Get PDF
    Wildlife are important reservoirs for many pathogens, yet the role that different species play in pathogen maintenance frequently remains unknown. This is the case for rabies, a viral disease of mammals. While Carnivora (carnivores) and Chiroptera (bats) are the canonical mammalian orders known to be responsible for the maintenance and onward transmission of rabies Lyssavirus (RABV), the role of most species within these orders remains unknown and is continually changing as a result of contemporary host shifting. We combined a trait-based analytical approach with gradient boosting machine learning models to identify physiological and ecological host features associated with being a reservoir for RABV. We then used a cooperative game theory approach to determine species-specific traits associated with known RABV reservoirs. Being a carnivore reservoir for RABV was associated with phylogenetic similarity to known RABV reservoirs, along with other traits such as having larger litters and earlier sexual maturity. For bats, location in the Americas and geographic range were the most important predictors of RABV reservoir status, along with having a large litter. Our models identified 44 carnivore and 34 bat species that are currently not recognized as RABV reservoirs, but that have trait profiles suggesting their capacity to be or become reservoirs. Further, our findings suggest that potential reservoir species among bats and carnivores occur both within and outside of areas with current RABV circulation. These results show the ability of a trait-based approach to detect potential reservoirs of infection and could inform rabies control programs and surveillance efforts by identifying the types of species and traits that facilitate RABV maintenance and transmission

    New Frontiers-class Uranus Orbiter: Exploring the feasibility of achieving multidisciplinary science with a mid-scale mission

    Get PDF
    n/

    Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin

    Get PDF
    Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies

    A mechanistic, stigmergy model of territory formation in solitary animals: Territorial behavior can dampen disease prevalence but increase persistence.

    No full text
    Although movement ecology has leveraged models of home range formation to explore the effects of spatial heterogeneity and social cues on movement behavior, disease ecology has yet to integrate these potential drivers and mechanisms of contact behavior into a generalizable disease modeling framework. Here we ask how dynamic territory formation and maintenance might contribute to disease dynamics in a territorial, solitary predator for an indirectly transmitted pathogen. We developed a mechanistic individual-based model where stigmergy-the deposition of signals into the environment (e.g., scent marking, scraping)-dictates local movement choices and long-term territory formation, but also the risk of pathogen transmission. Based on a variable importance analysis, the length of the infectious period was the single most important variable in predicting outbreak success, maximum prevalence, and outbreak duration. Host density and rate of pathogen decay were also key predictors. We found that territoriality best reduced maximum prevalence in conditions where we would otherwise expect outbreaks to be most successful: slower recovery rates (i.e., longer infectious periods) and higher conspecific densities. However, for slower pathogen decay rates, stigmergy-driven movement increased outbreak durations relative to random movement simulations. Our findings therefore support a limited version of the "territoriality benefits" hypothesis-where reduced home range overlap leads to reduced opportunities for pathogen transmission, but with the caveat that reduction in outbreak severity may increase the likelihood of pathogen persistence. For longer infectious periods and higher host densities, key trade-offs emerged between the strength of pathogen load, the strength of the stigmergy cue, and the rate at which those two quantities decayed; this finding raises interesting questions about the evolutionary nature of these competing processes and the role of possible feedbacks between parasitism and territoriality. This work also highlights the importance of considering social cues as part of the movement landscape in order to better understand the consequences of individual behaviors on population level outcomes

    Oikos 04527 Dryad Depository

    No full text
    Zip file containing code used to run and analyze simulations, as well as raw and processed data files

    The illusion of personal health decisions for infectious disease management: disease spread in social contact networks

    No full text
    Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals’ infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies

    Lessons from movement ecology for the return to work: Modeling contacts and the spread of COVID-19.

    No full text
    Human behavior (movement, social contacts) plays a central role in the spread of pathogens like SARS-CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and initial lockdown measures aimed to localize movement and contact in order to slow spread. Thus, movement and contact patterns need to be explicitly considered when making reopening decisions, especially regarding return to work. Here, as a case study, we consider the initial stages of resuming research at a large research university, using approaches from movement ecology and contact network epidemiology. First, we develop a dynamical pathogen model describing movement between home and work; we show that limiting social contact, via reduced people or reduced time in the workplace are fairly equivalent strategies to slow pathogen spread. Second, we develop a model based on spatial contact patterns within a specific office and lab building on campus; we show that restricting on-campus activities to labs (rather than labs and offices) could dramatically alter (modularize) contact network structure and thus, potentially reduce pathogen spread by providing a workplace mechanism to reduce contact. Here we argue that explicitly accounting for human movement and contact behavior in the workplace can provide additional strategies to slow pathogen spread that can be used in conjunction with ongoing public health efforts
    corecore