
A STUDY OF IMPLEMENTATION METHODOLOGIES FOR DISTRIBUTED

REAL TIME COLLABORATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Lauren Craft

June 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/479135916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2021

Lauren Craft

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A Study of Implementation Methodologies

for Distributed Real Time Collaboration

AUTHOR: Lauren Craft

DATE SUBMITTED: June 2021

COMMITTEE CHAIR: Maria Pantoja, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: John Clements, Ph.D.

Professor of Computer Science

iii

ABSTRACT

A Study of Implementation Methodologies for Distributed Real Time Collaboration

Lauren Craft

Collaboration drives our world and is almost unavoidable in the programming indus-

try. From higher education to the top technological companies, people are working

together to drive discovery and innovation. Software engineers must work with their

peers to accomplish goals daily in their workplace. When working with others there

are a variety of tools to choose from such as Google Docs, Google Colab and Over-

leaf. Each of the aforementioned collaborative tools utilizes the Operational Trans-

form (OT) technique in order to implement their real time collaboration functionality.

Operational transform is the technique seen amongst most if not all major collabo-

rative tools in our industry today. However, there is another way of implementing

real time collaboration through a data structure called Conflict-free Replicated Data

Type (CRDT) which has made claims of superiority over OT. Previous studies have

taken place with the focus on comparing the theory behind OT and CRDT’s, but

as far as we know, there have not been studies which compare real time collabora-

tion performance using an OT implementation versus a CRDT implementation in a

popularly used product such as Google Docs or Overleaf.

Our work will focus on comparing OT and CRDT’s real time collaborative perfor-

mance in Overleaf, an academic authorship tool, which allows for easy collaboration

on academic and professional papers. Overleaf’s current published version implements

real time collaboration using operational transform. This thesis will contribute an

analysis of the current real time collaboration performance of operational transform

in Overleaf, an implementation of CRDT’s for real time collaboration in Overleaf and

an analysis of the performance of real time collaboration through the CRDT imple-

iv

mentation in Overleaf. This thesis describes the main advantages and disadvantages

of OT vs CRDTs, as well as, to our knowledge, the first results of a non-theoretical

attempt at implementing CRDTs for handling document edits in a collaborative en-

vironment which was originally operating using an OT implementation.

v

ACKNOWLEDGMENTS

Thanks to:

• My parents, family and friends for their constant love and support

• Maria Pantoja, for her advice, time and assistance as my advisor on this thesis

• Franz Kurfess and John Clements for taking the time to be on my committee

• Andrew Guenther, for uploading this template

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Importance of Effective Tools for Collaboration 1

1.2 Techniques for Real-Time Collaboration 4

1.3 Our contributions . 5

1.4 Outline of Chapters . 5

2 BACKGROUND . 7

2.1 real-time Collaborative Tools . 7

2.2 Operational Transforms . 8

2.3 Conflict-free Replicated Data Types 10

2.4 ShareJS . 14

2.5 Automerge . 14

2.6 ShareLaTex . 14

2.7 Redis . 15

3 RELATED WORK . 16

3.1 Comparisons of OTs and CRDTs . 16

3.1.1 Analysis of Logs from Collaborative Sessions 22

3.2 Assessment of CRDT Performance 24

4 IMPLEMENTING REAL-TIME COLLABORATION IN OVERLEAF . . 25

4.1 Operational Transform . 25

vii

4.2 Conflict-free Replicated Data Type 26

5 EVALUATION . 32

5.1 Overview . 32

5.2 Testing Plan . 33

5.3 Performance of Operational Transform 34

5.4 Performance of Conflict-free Replicated Data Types 37

6 DISCUSSION . 42

6.1 OT and CRDT Claims . 42

6.2 Comparison of the OT and CRDT Implementations 43

6.3 Advantages and Disadvantages of OT and CRDTs 49

6.3.1 OT . 49

6.3.2 CRDT . 50

6.4 Technical Problems In Distributed Collaboration Tools 52

7 CONCLUSION . 55

7.1 Distributed Real-Time Collaboration 55

8 FUTURE WORK . 58

8.1 Expansion of the CRDT Implementation in Overleaf 58

BIBLIOGRAPHY . 60

APPENDICES

A CRDT Code . 64

viii

LIST OF TABLES

Table Page

3.1 A comparison of the techniques and steps for OT and CRDT im-
plementations performing the general transformation. The table is
originally from [27]. 20

6.1 This table demonstrates the performance of the OT algorithm as well
as the CRDT algorithm under various scenarios when evaluated on
their ability to meet all requirements for true consistency. 46

6.2 This table provides a clear comparison of the timing performance of
the edit latency’s for the OT and CRDT algorithms under various
editing scenarios. 48

ix

LIST OF FIGURES

Figure Page

2.1 This figure demonstrates the basic idea of how the operational trans-
form algorithm achieves the general transformation of a given edit.
Original image from [25] . 9

2.2 This figure demonstrates the basic idea of how the conflict-free repli-
cated data type algorithm achieves the general transformation of a
given edit. The original image is from [25] 11

4.1 Example of the JSON update object produced from an incoming
change. 29

5.1 This figure provides a visual representation of the timing results for
each of the editing scenarios utilized when examining the perfor-
mance of the operational transform algorithm. 36

5.2 This figure provides a visual representation of the timing results for
each of the editing scenarios utilized when examining the perfor-
mance of the conflict-free replicated data type algorithm. 40

x

Chapter 1

INTRODUCTION

The following chapter provides an introduction into distributed real-time collabora-

tion, its importance and the contributions and focus of this thesis.

1.1 Importance of Effective Tools for Collaboration

Collaboration is an essential part of everyday life. It serves as an important tool

for many different areas of work including business, science, research and technology.

It is the opportunity and success that comes from collaboration that helps to drive

innovation in our society today. Collaborative editing allows tasks to be completed

in a shorter period of time, the total number of errors to be reduced, and more view

points and skills to be included in the end result [2, 6]. It is nearly impossible for

a professional to avoid participating in collaborative work. Therefore in order for

collaboration to be as successful and productive as possible, collaborative platforms

must allow for real-time updates which are tolerant of faults and mistakes. A good

collaborative system should allow a user to perform edits on a shared document as

easily as they could perform edits on a single author document [2, 5].

Collaborative tools allow employees and/or researchers to work together on the same

project no matter their physical location. The ability for humans to work together on

a single task from different locations has always been important, but its importance

has increased since 2020 when a global pandemic (COVID-19) hit the entire world.

Within weeks of the first local cases being detected, most of the US work force had

1

to transition from working in their company office to working remotely from their

homes.

An obvious part of collaborative tools, compilers, text editors, etc.; is that each of

these software tools is a Distributed System (DS). A distributed System is difficult

to define, but most DS designers agree that DS is a system with multiple different

machines that communicate and coordinate actions in order to appear as a single

coherent system to the end-user. Many of these DS present the same coordination

and communication challenges; in this thesis we will specifically focus on problems

related to distributed collaboration and the need to synchronize documents (code,

text, etc) that will be written by multiple people. The distributed collaboration

tools discussed in this thesis allow for multiple clients to collaborate on document

replicas in a manner that emulates, as nearly as possible, the same effectiveness of

collaboration as when one client is performing edits on a non-replicated document [3].

Distributed Collaboration requires infrastructure, such as emails, instant messaging

and document sharing platforms. Since Document Sharing platforms are becoming

an increasingly important type of collaborative environment and since they are a

relatively ”newer” technology, there has been a lot of recent research in this area.

Collaborative tools present very interesting challenges from the Distributed Systems

point of view. In this thesis we wanted to explore some of the more recently published

algorithms meant to improve distributed collaboration so that we can compare and

implement the algorithms by benchmarking their real performance on overleaf, a

distributed collaboration tool used by millions of researchers around the world.

What is the main problem in regards to distributed collaboration tools? Most articles

focus on project management problems, for example, how to keep teams motivated or

how to effectively communicate with each other [30]. Those problems are interesting,

but we want to focus on the technical aspects of distributed document creation.

2

The aforementioned technical aspects which cause problems are mainly attributed to

synchronization and consistency. In order for consistency to be maintained amongst

distributed copies of a document, there are three requirements which must be met:

convergence (all documents result in the same state once edits are applied), intention

preservation (the effects of edits are as the user intended) and causality preservation

(all edits are applied in their causal order). There are many factors which can cause

consistency to fail which will be discussed in this thesis. One example is if two users

are editing a document in the same location but the network connection is bad and

there is high latency, each user may think they are writing in that spot alone with no

conflicts, but their edits may be becoming jumbled with each other since they are not

able to see the effects of each others edit in close to real-time. Therefore, it is difficult

to implement a platform in which a single document can be modified by different

engineers/researchers at potentially the same time. These technical problems are

described in further detail in the related works and discussion chapters.

The problems which come with implementing distributed collaboration are by no

means trivial. Some of the most commonly used distributed tools such as Google

Colab [9] or Jupyter Notebooks [15], do not allow multiple collaborators to work on

the same project. Engineers at these companies have been working on a collaborative

version of their respective platforms for several years now. For this thesis we wanted to

initially study adding a collaborative capability to Google Colab, but Google no longer

provides an open source version of Colab thus making it impossible to further develop

with their platform. Overleaf [10] on the other hand, does provide the source code and

already has collaborative capabilities. Since Overleaf is a commercially available tool

being used by millions of researchers, its open source and collaborative aspects made

Overleaf the perfect candidate for this thesis, However, since Overleaf was developed

by ”hundreds” of experienced engineers and since it is a large and complex piece of

software, it took a long time to become familiar enough with Overleaf to the point

3

that we were able to begin performing changes to the communications/distribution

of Overleaf.

1.2 Techniques for Real-Time Collaboration

There are various techniques to allow for real-time collaboration, but the two most

common and effective types are through operational transforms (OT) [?] and conflict-

free replicated data types (CRDTs) [21]. The operational transform technique has

been around much longer than CRDTs. The first paper which introduced the OT

technique was published in 1989 and was widely adopted in 2009 into main tools like

Apache Wave and Google Docs [7]. As for CRDTs, the first article which introduced

the idea was published in 2011. The idea of a CRDT is slowly being adopted and

researched by various distributed companies, but many of the companies are yet to

fully adopt CRDTs for use in implementing real-time collaboration [21].

Most major collaborative platforms implement the operational transform technique

[11, 2, 16]. When CRDTs were proposed years after the operational transform

methodology was proposed, there were claims that CRDT solutions were better suited

for real-time collaboration than OT solutions. Some even went so far as to say using

OT for distributed collaboration was a wrong and inefficient technique [25, 27, 28].

Despite CRDT claims of superiority over OT, there are no major products which

have disposed of their OT collaborative implementations and migrated to usage of

CRDTs.

4

1.3 Our contributions

The work outlined in this thesis is aimed to understand why CRDTs are not com-

monly used for real-time collaboration implementations in major commercial prod-

ucts. We focused on Overleaf, an academic authorship tool, which allows for real-time

collaboration using operational transform. Our contributions include an evaluation

of Overleaf’s operational transform implementation in respect to real-time collabo-

ration, a CRDT implementation of real-time collaboration integrated into Overleaf

and an evaluation of how the CRDT implementation performed in comparison to the

OT implementation. We wanted to evaluate if CRDT-driven real-time collaboration

performed better, worse or the same as operational transform driven real-time col-

laboration. The results of our research and experiment are outlined throughout this

paper. We also provide a discussion of the respective advantages and disadvantages

of OT and CRDTs.

1.4 Outline of Chapters

Following this introduction is a background section which provides an overview of

the important topics and technologies which will be addressed in this thesis. The

next chapter after the background is the related works section. This section will

discuss previous work performed by researchers into the theory and performance of

operational transform and conflict-free replicated data types. Following the related

work is where our contributions begin. Chapter 4 discusses the implementations

of OT and CRDTs in Overleaf. Chapter 5 then evaluates the performance of the

OT and CRDT implementations of real-time collaboration in Overleaf. Following

the evaluation, Chapter 6 is where discussion takes place in order to compare and

contrast the two ways of implementing real-time collaboration. Chapter 7 is where

5

conclusions will be drawn and discussed. The final chapter, Chapter 8, acknowledges

possible areas of expansion and ideas for future work and further research to expand

upon the work performed in this thesis.

6

Chapter 2

BACKGROUND

This chapter describes in detail some topics and pieces of information which are

necessary for proper understanding and agreement when reading this thesis.

2.1 real-time Collaborative Tools

Real-time collaborative editors allow multiple users to simultaneously edit documents

no matter their respective geographic locations [27]. Modern collaborative editors

have risen in popularity over the past decade as a necessary tool for students and

professionals alike. Collaborative tools provide the ability for teams to get work done

more efficiently with reduced error and an increase in the variety of viewpoints and

skills which contribute to the work [6, 2]. The need for collaborative tools is especially

high during the transition to remote work during the COVID-19 pandemic. However,

despite the more recent need and motivation for collaborative editors, the idea of a

collaborative real-time editor has been around for some time now. The first real-time

collaborative editing tool was proposed by Douglas Engelbart in 1968 in the ’Mother

of All Demos’ [7, 20]. Engelbart’s ’Mother of All Demos’ was presented at the Asso-

ciation for Computing Machinery / Institute of Electrical and Electronics Engineers

(ACM/IEEE) Computer Society’s Fall Joint Computer Conference in San Francisco.

At this conference, the idea of collaborative editors was applauded, yet it was many

years after when a collaborative editor was actually created. In order for collaborative

editors to exist, techniques and structures to handle consistency and errors needed

to be developed and tested. Without a strong technique to handle these situations

7

and ensure that each client is receiving the correct updates, real-time collaboration

would not be effective. Another essential aspect for effective distributed real-time

collaboration is the edit latency and performance. If the collaborative platform does

not efficiently respond to edits in a manner which is comfortable to the user, users

will become frustrated and their work will not be effective [6, 2, 13]. The consistency

and performance of distributed collaborative systems will be discussed throughout

this thesis.

2.2 Operational Transforms

Operational transform (OT) is the replication mechanism which real-time collabo-

rative applications traditionally rely on [2]. The operational transform technique

was made by C. Ellis and S. Gibbs in 1989 for their Group Outline Viewing Editor

(GROVE) [6]. Ellis and Gibbs intended for the operational transform technique to

allow for maintenance of consistency and concurrency in collaborative editing envi-

ronments. Collaboration with operational transforms relies on replicated document

storage. This means that each client has their own copy of the document which op-

erates locally with no locking or blocking mechanisms. The changes executed on the

client’s document are then propagated to the other clients. Each co-editing site main-

tains a local internal buffer. The buffer begins empty, but once a user makes a change

to the document, the local operation handling begins and the operation is placed in

the client’s local internal buffer. Once a change is added to the client’s local inter-

nal buffer, the change must be transformed in accordance to concurrent operations

performed by other replicas in order to ensure intended operation is preserved and

to allow for proper convergence on all replicated document sites. Once the operation

has undergone the transformation step, it is then propagated to the other clients to

be added into their local buffers and incorporated into their local copies.

8

Figure 2.1: This figure demonstrates the basic idea of how the operational
transform algorithm achieves the general transformation of a given edit.
Original image from [25]

Figure 2.1 above demonstrates a simple example of the text ”abe” being manipulated

by two clients in a collaborative text editor. Each of their external states begin with

”abe” and their local internal buffers begin empty. We assume that position indices

begin at 0. In this example, client 1 deletes the character ’b’ from position 1, while

client 2 simultaneously inserts the character ’c’ in position 2 in the ”abe” text. Assume

that the two operations are concurrent and take place without any knowledge of each

other [25]. When client 1 deletes character ’b’ from position 1, a timestamp is created

for that operation. At the same time as client 1’s deletion operation is executed,

client 2 is performing its concurrent insertion operation, inserting the character ’c’

into position 2. OT has an internal ordering algorithm which determines what order

to handle concurrent operations. We will assume the algorithm decides to handle

client 1’s update first. So client 1’s operation will be applied to create the resulting

string ”ae”. Next client 2’s operation must be transformed in accordance to how

the concurrent operation performed by client 1 affects it. Since client 1 deleted a

character at index 1 and client 2 wants to insert a character at a later index, client

2’s index must be shifted by 1. The resulting operation after the transformation is to

now insert ’c’ into position 1. Once this operation is applied to the text the resulting

text is ”ace”. The operations are all position-based in relation to the positions of

the document’s external state. Therefore, when operations are concurrent, the local

9

internal operation positions must be transformed so that they agree with the users’

intention and allow for consistency amongst all clients. Once the transformation

functions take place, the respective client’s operation is placed into the client’s internal

buffer. The system then propagates the operations out to the other clients. Once both

operations are propagated to the clients, their buffers are updated accordingly. This

allows for the clients to each undergo operations which have been coordinated with the

operations performed by all clients editing the document. In the event that two users

concurrently perform an operation in the same location (i.e. client 1: ”abe” becomes

”ace” and client 2: ”abe” becomes ”ade”), most OT implementations have an internal

ordering algorithm to decide the order in which to handle and apply concurrent edits.

Another possible option is to have an algorithm which decides which edit wins and

then do not apply the edit which loses. However, this results in data loss which may

not be favorable. No matter how the OT algorithm decides to handle concurrent

edits, the OT technique allows for consensus and correctness during collaboration in

the text editor.

2.3 Conflict-free Replicated Data Types

Conflict-free replicated data types (CRDT), sometimes also referred to as Commu-

tative Replicated Data Types, are a more recently introduced class of replication

mechanisms. CRDT operations execute concurrently and are specifically designed to

be commutative, meaning they rely less heavily on consensus and synchronization [2].

The concept of CRDTs was first formally defined in 2011, years after the concept of

OT was first defined. The concept of CRDTs was created with the intention of it

allowing for a more efficient and correct technique for collaborative text editing. All

approaches to CRDTs are supposed to provide strong eventual consistency. Eventual

consistency is the idea that each client or user that is editing their own local copy

10

of the collaborative environment, which allows each client or user to perform local,

tentative updates. These updates are periodically propagated to the other clients at

times that the connections are available [4]. Strong eventual consistency is a con-

sistency model which guarantees that all operations and edits are propagated to the

other clients in the correct sequential order. This approach to collaborative changes

allows all user edits to eventually be caught up and available to each client or user.

The general idea behind how CRDTs operate and handle updates is as follows. A

user or client performs an edit on the document. This edit is registered as a local

operation and the effective change of the edit appears immediately on the user’s

document. The operation which was generated is first in a position-based operation,

it is then transformed into an identifier-based operation to then be added to the

internal data object sequence representing the current document state of that user or

client. The identifier-based operation which is created is then propagated to all remote

clients. When a remote client receives the identifier-based operation, the operation

is applied to the remote client’s internal object sequence, the operation is converted

from identifier-based to position-based, and given the operation, the corresponding

edit is applied to the remote client’s document state.

Figure 2.2: This figure demonstrates the basic idea of how the conflict-
free replicated data type algorithm achieves the general transformation of
a given edit. The original image is from [25]

11

Figure 2.2 above demonstrates an example of how a CRDT handles concurrent oper-

ations performed by two clients working on a text editor which begins with an initial

state of the string ”abe”. For CRDTs, the initial data object sequence is populated

according to the initial state of the document. In the context of this example, the

data object sequence begins as:

IS=[@s],[a,ida,@s,idb,v],[b,idb,ida,ide,v],[e,ide,idb,@e,v],[@e]

For each object in the data object sequence, there are 5 distinct and required parts:

if we look at ¡b,idb,ida,ide,v¿, b is the character which the object represents in the

document, idb is the immutable identifier assigned to that object, ida and ide are the

immutable identifiers of the objects which immediately surround the idb object and

lastly, v is what indicates that the object is visible in the document. If the object were

to be deleted from the document at a later time, the v would instead become iv for

invisible and the data object becomes known as a tombstone since it is no longer live

and viewable in the document. As for @s and @e objects, those are special identifier

objects which mark the start and end of the internal object state.

As edits are performed by the clients, the internal data object sequence is updated

accordingly. We assume that the position indices begin at 0. For this example, client

1 performs an operation to delete the character at index 1, this results in the string

”ae” since the b at index 1 was deleted. Concurrently, client 2 performs the operation

to insert the character ’c’ into index position 2 which generates the resulting string

”abce”. Each of their position-based operations are converted into identifier-based

operations. This conversion to identifier-based operations is completely internal and

not visible to either client. Once the identifier-based operations are generated, they

can be incorporated to the internal data object sequence. Client 1’s operation is

first applied to the internal object sequence. For this operation, the identifier-based

12

operation becomes D(idb) indicating the object with the identifier idb must be turned

invisible. This results in the internal object sequence becoming:

IS=[@s],[a,ida,@s,idb,v],[b,idb,ida,ide,iv],[e,ide,idb,@e,v],[@e]

The identifier-based operation of client 1 is then propagated to all other clients.

Once a client receives the propagated identifier-based operation, it is converted to

a position-based operation and applied. Then client 2’s identifier-based operation,

I(c,idc,idb,ide), is applied. This identifier-based operation was created by examining

the internal object sequence and identifying the neighboring object identifiers to index

2 where the object is to be inserted, idc is the resulting immutable identifier for the

new object to insert. To insert the new object, the number of visible objects in

the internal object sequence which were present before the current operation and

all operations concurrent with this operation are counted until we reach the correct

position. The new object ¡c,idc,idb,ide,v¿ is added to the object sequence. This

results in the following object sequence:

IS=[@s],[a,ida,@s,idb,v],[b,idb,ida,ide,iv],[c,idc,idb,ide,v],[e,ide,idb,@e,v],[@e¿]

The identifier-based operation is then propagated to all clients, converted to a position-

based operation and applied just as client 1’s operation was. The communication

structures which operate with CRDTs are not specifically designed, this leaves more

implementation and design decisions for the programmers. Overall, the CRDT al-

gorithm is an identifier-based internal data object sequence style which continuously

grows with the document. The space and time complexities of CRDT algorithms will

be discussed in Chapter 6.

13

2.4 ShareJS

ShareJS is an open source operational transform library which can be utilized to

add real-time concurrent editing to web applications [8]. ShareJS handles all of the

edits which are submitted and applies them to its internal master document which

is contained inside a ShareJS database. This specific operational transform library,

ShareJS, is what Overleaf uses for its collaborative editing functionality.

2.5 Automerge

Automerge is an open source conflict-free replicated data type library for adding real-

time concurrent editing to applications [14]. Automerge is still under development

and is continuing to make advancements in its CRDT implementation. This library is

what our thesis relies on for implementing real-time collaboration in Overleaf through

a CRDT methodology.

2.6 ShareLaTex

ShareLaTex is a collaborative web LaTex editor which was acquired and integrated

into Overleaf in 2017 [29] Before integrating ShareLaTex into Overleaf, the two prod-

ucts had similar purposes and goals of acting as a real-time collaborative LaTex

editing environment. From our research we believe that Overleaf implements its col-

laborative features and document updates using ShareLaTex source code. In order

for Overleaf to maintain its documents, there is a connection to a Redis ShareLatex

database. Redis will be defined and described in detail below.

14

2.7 Redis

Redis is a data structures server which is used by ShareLaTex to store the LaTex

document source [17]. The Redis server is responsible for storing the document ver-

sions which are displayed on the front end for Overleaf. Each client has a view of the

document at its current state in Redis. Each time a change is made, the document

is retrieved from Redis, updated by the document-updater container, and then sent

back to Redis with its new changes applied.

15

Chapter 3

RELATED WORK

The following chapter describes previous work done by researchers to look into ap-

plications and comparisons of operational transform and conflict-free replicated data

types.

3.1 Comparisons of OTs and CRDTs

Previous research has been performed in attempt to form comparisons between the

two replication mechanisms: operational transform and conflict-free replicated data

types. Much of this research focuses on evaluating the more recently developed CRDT

algorithms since less is known of its performance and usability in comparison to the

current knowledge of the traditional OT algorithms. As far as we know, from our re-

search it appears that the previous work in the area of comparing OT and CRDT per-

formance for distributed collaboration has been largely theoretical. We have not found

examples where researchers have taken an operational transform implementation and

re-implemented the collaboration mechanism to utilize a conflict-free replicated data

type, and then compared and evaluated the two implementation methodologies in

respect to each other.

Prior research has taken place in attempt to examine the real differences between the

long used and highly regarded operational transform algorithm, and the newer and

more obscure conflict-free replicated data type method for working with distributed

collaborative editors. There have been claims of purported advantages which CRDTs

maintain over OT in the past which have caused a lot of confusion and have left

16

room for debate upon the validity of the statements of superiority in the past [27]. A

team comprised of researchers from Nanyang Technological University in Singapore,

Singapore and Codox Inc. in San Jose, CA, USA, worked to reveal the differences

between the CRDT and OT approaches and uncover the validity of various claims

and myths in regards to the performance of CRDTs in collaborative editors. Their

work was published in a three-paper series of articles [28, 27, 25].

In the first article of the series, the researchers investigated the differences between

OT and CRDT approaches under a general transformation framework for consis-

tency maintenance in collaborative editors which they developed by examining the

core techniques and basis for multiple OT and CRDT techniques [25]. In today’s mod-

ern world, real-time distributed collaborative editors all maintain similar underlying

architectures with an editor application and shared documents which are replicated

and distributed to each of the collaborating clients editing sites [25]. When a client

is working on a collaborative document, their edits typically appear instantaneously

upon their local version, then the local edits are propagated to the remote sites in as

close to real-time as possible. The edits which are propagated to the other editing

sites can either be distributed as ’operations’ or ’states’. For the OT and CRDT

algorithms, the edits are treated as operations. Therefore, the main problem to con-

sistency is to find a way for the operations generated by one local document replica,

to be transformed and replayed on all other replicas while maintaining consistency

across all replicas. The details in how the OT and CRDT algorithms handle their

editing operations in order to maintain consistency amongst all document replicas

will be discussed below.

In their research, the team at Nanyang Technological University and Codox Inc found

that CRDT is similar to OT in that they both follow a general transformation ap-

proach, but CRDT largely differs from OT in that CRDT indirectly achieves the

17

transformation, whereas OT directly achieves the transformation. This transforma-

tion approach treats each edit as an operation which must be transformed in some way

into a newer version which will maintain consistency amongst all document replicas

even during concurrent edits on replicated sites. The general transformation approach

allows for concurrent operations to maintain a commutative property, meaning that

they can be transformed in different orders, yet still yield the same results.

The general transformation approach which the researchers discovered is the generic

sequence of steps which both OT and CRDTs follow can be described as follows.

Consider a situation in which two users are working on the same plain-text document

which is replicated at each of their individual editing sites. For this example, each

individual editing site for the respective document maintains the text ”abc”. For the

first example edit to the general transform methodology, user 1 performs the operation

to delete the character at index 1. Then, user 2 performs the operation to insert the

character ’f’ into index 2. Assume that the two operations are executed concurrently.

Each of the individuals operations appear instantly on their local version allowing for

an immediate local response. However, the operations each client performed need to

be transformed in such a way that they maintain consistency on all replicas which

propagated to the various editing sites. User 1’s operation is transformed according

to how user 2’s operation may affect it. Since user 2 is editing at index 2 and user 1 is

editing at index 1, user 1’s operation is not affected and does not need to be changed

during its transformation step and can then be propagated to the editing site of user

2. The operation user 2 made needs to be transformed according to the edit which

was made by user 1. User 2 wanted to insert a character at index 2, but user 1 deleted

a character at index 1. Therefore, the indices of the content from index 1 on have all

shifted left by one. The operation coming from user 2 to user 1 will be transformed into

an insertion of the character ’f’ at index 1. The transformation and propagation of the

operations under this general transformation maintains consistency on all replicated

18

editing sites. The requirements for this consistency include convergence, meaning all

document replicas are identical, as well as preserved intention, meaning the initial

effect of the local operation is the same as the operations resulting effect once the

operation is propagated and synced to the other editing sites.

The researchers at Nanyang Technological University and Codox Inc. made many dis-

coveries about OT and CRDT which are relevant to this thesis. First they found that

OT and CRDT require the same general consistency requirements of convergence,

intention-preservation and causality-preservation. The meanings of these require-

ments and their importance will be discussed more in a later section. A difference they

emphasized between OT and CRDT is the way in which their concurrent operation

transformations are handled. OT implementations operate using a compare-calculate

method [25] in which the numerical positions in their operations are compared and

transformed to their new positional arguments based on how the concurrent opera-

tions affect each other. CRDT solutions are identifier-based and applied to an internal

object sequence. The internal object sequence maintains a list of all visible objects,

and some CRDT implementations also record the non-visible objects which have

been deleted. For the context of this thesis we observe CRDT implementations which

include both the visible and invisible data objects in their internal sequence. The

operations performed by clients are transformed by the CRDT search-count method

which scans the objects in the sequence and counts the number of visible objects

and inserts or removes in accordance to the given operation. The researchers found

that the OT compare-calculate method is more efficient than the CRDT search-count

method in that the OT method has the same constant, low cost, whereas the CRDT

method can be variable in length and maintains a high cost [25]. The aforemen-

tioned difference between OTs direct transformation approach and CRDTs indirect

transformation approach can be explained by OT recording the impact of concurrent

operations in the buffer and directly comparing and calculating the effects of all op-

19

erations based on their positional differences, whereas CRDTs record the effects of all

operations in the internal object sequence, then convert the positional-based opera-

tion into an identifier-based operation for the local site application and then take the

identifier-based operation, convert it back to a position-based operation and apply it

to the remote site. Both theoretically produce the same result, but their approaches

are very different. A table describing the similarities and differences between OT and

CRDT for performing the general transformation for edits in collaborative editors is

shown in Table 3.1.

Table 3.1: A comparison of the techniques and steps for OT and CRDT
implementations performing the general transformation. The table is orig-
inally from [27].

In the second article of their three article series, the researchers at Nanyang Tech-

nological University and Codox Inc. looked into the correctness and complexity of

OT and CRDT. In their article, they first address their findings on the correctness of

OT algorithms. In order for convergence of collaborative documents to be properly

reached, there are two properties which must be met: Convergence Property 1 (CP1)

and Convergence Property 2 (CP2).

• Convergence Property 1: Given Oa and Ob defined on the document state

DS, and a transformation function T, if Oa’= T(Oa, Ob), and Ob’ = T (Ob,

20

Oa), then applying Oa and Ob’ in sequence on DS produces the same state as

applying Ob and Oa’ in sequence on DS. [27]

• Convergence Property 2: Given Oa, Ob and Oc defined on the same state,

and a transformation function T, if Oc’ = T(Oc, Ob) and Ob’ = T(Ob, Oc),

then transforming Oa against Ob and then Oc’ produces the same operation as

transforming Oa against Oc and then Ob’. [27]

Convergence Property 1 is easily achievable in a plain text setting, however, Con-

vergence Property 2 can be more challenging to maintain depending on the editing

circumstances. The challenge with maintaining convergence property 2 will here on

be referred to as the CP2 issue. The specific case in the CP2 issue which can be

non-trivial to handle is the false-tie puzzle. The false-tie puzzle was discovered and

detailed by [26, 24]. The false-tie puzzle is one in which arbitrary transformation

paths amongst multiple transformations result in different outcomes. This issue is

solved by completely avoiding the requirement for CP2 at all by writing OT algo-

rithms which do not arbitrarily transform concurrent operations in random orders,

but rather have a system in place for the same order to apply transformations to con-

current operations in various contexts [27]. There is another approach to achieving

and persisting CP2 through CP2-preserving algorithms which ensure the order of the

transformations continue to preserve the convergence properties; these algorithms are

much more complicated than the ordering approach. Despite claims of OT being in-

correct and having challenges, the researchers found that over the years all problems

and challenges to OT correctness have well-developed and tested solutions.

As for CRDT approaches, there are challenges in creating unique object identifiers.

The CRDT approach requires each piece of content in the editor to be an object

identifier with an identifier for the text character itself, as well as identifiers for its

immediate neighbors. Adding in characters in the middle of two existing characters

21

in a document can result in difficulties with creating unique identifiers, especially

if the identifiers are largely number-based. Since the numbers have limitations on

precision, there are only so many numbers when choosing randomly between two

existing numbers. This limitation can cause problems such as no available identifiers

left to be chosen, as well as possible duplicate random number identifiers. Inconsistent

and violating positions and identifier problems in the CRDT approach are still in need

of solution development in order to ensure correctness [27]. This finding contributes to

the research in this thesis in that it may be an indicator of problems which occur when

a CRDT approach is integrated in Overleaf. The Automerge CRDT library used in

this thesis claims to have solved the problem and found a solution for creating unique

identifiers [13]. This solution will be discussed in detail in Chapter 7. There are other

challenges with a CRDT approach which will be addressed when comparing OT and

CRDT space and time complexities.

3.1.1 Analysis of Logs from Collaborative Sessions

Evaluating the performance of the operational transform algorithm in comparison to

the commutative replicated data type performance has proven to be a useful area of

study in order to gain a better understanding of how the two ways of implement-

ing real-time collaboration compare. The ability to have an effective and easy to

use collaborative editor is essential for team work in a variety of settings including

academia, professional and personal. A good collaborative editor should be as easy

to edit and work on as a single-user editor. Investigating further into various ways of

implementing real-time collaboration can assist in reducing task completion time as

well as errors [2].

A team of researchers from University of Lorraine in France focused their research

on evaluating the suitability of CRDTs for collaborative editing. The researchers

22

first analyzed the theoretical performance of the CRDT algorithms in comparison to

the OT algorithm. Much of the research that has been conducted on comparison of

CRDT and OT algorithms has focused on the theoretical side. In order to form more

concrete comparisons between various CRDT algorithms and the more traditional

OT algorithm, the researchers conducted their experiment by evaluating the editing

logs created from peer-to-peer collaboration environments for each of the algorithms

that were being assessed. The researchers manipulated a text editor to output editing

logs which recorded the sequence of edits performed by their experimental users.

Their experiment consisted of students simultaneously working on documents using

a collaborative editor, during which many of the operations generated were logged

as data to be evaluated upon experiment completion. In this experiment, TeamEdit

was used as the real-time collaborative editor where the students performed their

collaborations. The operations that were evaluated were narrowed down to character

insertions and character deletions. Their work was the first experiment to analyze

CRDT and OT algorithms using collaboration traces [2]. Once the collaboration

traces were created by the students participating in the experiment, the various CRDT

and OT algorithms which they were analyzing were then applied to the outputted

collaboration traces.

The researchers essentially simulated how an implemented version of each algorithm

would perform on the provided collaboration trace in order to compare the algorithm

performances. By simulating their OT and CRDT algorithms on the collaboration

traces, they were able to conclude that both OT and CRDTs appear to be suitable

for real-time collaboration. Their research went beyond the more popularly seen

theoretical evaluation of CRDT and OT performance, and applied the algorithms to

the collaboration traces. However, they did not thoroughly explore the difficulties

of concurrent operations and convergence issues. Their work mentioned future paths

23

of research to explore communication complexity and convergence latency [2]; areas

which we look into in this thesis. The research discussed in this thesis will go beyond

theoretical evaluation and explore actual implementations of an operational transform

algorithm as well as a Commutative Replicated Data Type algorithm in the rich-text

editor Overleaf.

3.2 Assessment of CRDT Performance

When CRDTs were first proposed in 2006, there were claims that CRDT solutions

were more favorable than OT solutions. OT solutions began to be regarded as ’in-

correct and inefficient technique’ [28]. Despite the superiority that CRDT algorithms

were said to hold over OT algorithms, CRDT algorithms are not popularly seen in

practice amongst the popular collaborative editing tools created by the leading tech-

nology companies. The scarcity of CRDT algorithms used in real-world applications

has led to confusion and a lack of consensus as to the true effectiveness of CRDT

algorithms.

24

Chapter 4

IMPLEMENTING REAL-TIME COLLABORATION IN OVERLEAF

This chapter outlines the operational transform algorithm which was already imple-

mented in the published version of Overleaf, as well as the CRDT algorithm which

we implemented and integrated into Overleaf on our own in order to examine how

the two ways of implementing real-time collaboration compare to one another.

4.1 Operational Transform

Overleaf, like most popular real-time collaborative document editing products, uti-

lized operational transform (OT) for its method of implementing real-time collabo-

rative features. Operational transform was developed as a method of implementing

real-time collaboration in the late 1980’s [25, 7]. OT involves distributed computing

theories and concepts which specifically focus on concurrency and context [25]. Major

commercial products for collaborative editing all utilize OT in order to implement

real-time collaboration. Operational transform is the common way of implement-

ing document collaboration despite claims that CRDTs may be better performing

[16, 2, 11]. Previous work has examined the theory behind OT and CRDTs and com-

pared them theoretically. Our contribution to this field of research is a comparison

of OT and CRDTs implemented in Overleaf, a document editing software product.

The research that is discussed in this paper was built off of the current published ver-

sion of Overleaf. Since the current implementation utilizes the operational transform

approach to real-time collaborative document editing, it allowed a baseline of an OT

25

implementation to be evaluated and compared to a different version of implementing

real-time collaboration through CRDTs.

Overleaf’s public source code is broken down into multiple docker containers. The

docker containers allow for Overleaf to separate various parts of the product as a

whole into nested containers of all the sections’ code and dependencies, thus allow-

ing for easier development upon each section. Overleaf was created by hundreds of

engineers, thus it is a large repository of code. Even each individual docker container

is large and takes time to understand. Upon research and evaluation of the various

docker containers which belong to Overleaf, we discovered that the code which en-

ables collaboration amongst clients working on the same document in Overleaf lies

within the document-updater container. In document-updater, updates to the doc-

ument are received, processed and propagated to all clients individual copies of the

document. Overleaf performs update handling with an operational transform library

called ShareJs. ShareJs is how Overleaf ensures consistency amongst all client copies

of the document and the client updates. Since Overleaf already maintains a real-time

collaborative editing functionality using ShareJS for an operational transform algo-

rithm, we did not have to implement the OT algorithm ourselves. Thus, we created

our own CRDT implementation to allow distributed real-time collaboration in Over-

leaf and compared it to the original OT version in Overleaf. The specific details of

how we implemented the CRDT algorithm for collaboration in Overleaf are outlined

below.

4.2 Conflict-free Replicated Data Type

Previous works which focused on comparison of OT and CRDTs assessed the theo-

retical performances of the two techniques through various ways including theoretical

26

timing analysis [28, 27, 25] and theoretical application of OT and CRDT algorithms

to existing editing logs and collaboration traces [2]. This thesis contributes a non-

theoretical implementation of CRDT handling for collaborative edits amongst a dis-

tributed document. In order to change the implementation of update handling in

Overleaf, extensive research took place in order to begin to understand the inner

workings of Overleaf. As mentioned earlier, Overleaf is a complex piece of software

created and maintained by hundreds of engineers, therefore it was a challenge to be-

come familiar with the code base and how it could be manipulated to operate using

CRDTs for editing. Once we were able to gain an understanding of how Overleaf

operated on a high level, we began to design a plan for implementing CRDTs to

handle the collaborative edits on their distributive system.

Overleaf is broken down into multiple docker containers. Each docker container han-

dles a different aspect of the Overleaf application as a whole. The docker container

which we focused on was document-updater. This container is used for handling up-

dates on the document by all clients. We originally planned to rewrite this entire

container in order to allow for a fully decentralized CRDT collaborative implementa-

tion. Upon research into the Overleaf code base, the changes required to rewrite the

entire document-updater section were too extensive to be performed by one person.

Therefore, we made the decision to leave the current client and server handling in

place, but rewrite the algorithm which handled the users updates.

In order to change Overleaf’s document update handling from an operational trans-

form algorithm into a conflict-free replicated data structure form, I utilized an already

developed CRDT library called Automerge. Automerge is a CRDT data structure

library for building collaborative applications in JavaScript [14]. This CRDT data

structure library was created by Martin Kleppmann, a Senior Research Associate and

Affiliated Lecturer at the University of Cambridge Department of Computer Science

27

and Technology, along with his colleagues and other fellow contributors. According

to their research and publications, Automerge is a working CRDT data structure

library which is still undergoing development to continue to improve and expand.

The published version of Automerge which we utilize in this thesis allows for a work-

ing implementation of the CRDT data structure algorithm in performing updates

to a distributed collaborative document. We implemented Automerge’s CRDT data

structure into the distributed collaboration update handling in Overleaf. Overleaf,

as mentioned in the previous section, performs all document update handling using

ShareJs, an operational transform library. The usage of a publicly sourced real-time

collaboration implementation allows one to create a collaborative platform, without

having to worry about the implementation details and correctness of the collaborative

algorithm itself. However, the usage of the collaborative library is more than simply

importing the library source.

The transition from the ShareJs operational transform implementation to the Au-

tomerge conflict-free replicated data type version, was not trivial. It required devel-

oping an understanding of how Overleaf’s source code operated in its current state.

The transition to utilizing Automerge’s CRDT data structure from ShareJS’s OT

structure began by examining the flow from the update which was submitted, to the

update processing, to the propagation of the update to all clients and remote hosts.

When a user submits and performs a change to the document, the change is pro-

cessed into an update object. As shown in Figure 4.1, the update object contains the

document id (as it is stored in Redis), the operation (positional argument, operation

type, text), the document version number, the meta data and the unique update

hash. Once the change has been processed into an update object, the update is then

sent to get integrated into the document state.

28

Figure 4.1: Example of the JSON update object produced from an incom-
ing change.

The update must first be examined to ensure that it is not a duplicate of an update

which has already been processed. If the update is determined to be new, then it

is allowed to continue for processing and can be applied to the document model. A

model of the document is created upon the first edit, and is maintained and manip-

ulated as new updates are received and processed. Our CRDT implementation does

not waste time by creating a new model of the document for each update. This is an

improvement over Overleaf’s operational transform implementation which creates a

new ShareJS model for the document each time an operation is submitted. Therefore,

our CRDT implementation saves time and memory by utilizing the same model to

represent the document during each update.

A user’s text editing operations are broken down into simple insertions or deletions.

Thus, no matter what action the user is performing, it can either be defined as

an insertion or a deletion. The update maintains the information on the operation

type and the text involved in said operation, therefore, the update is then parsed and

information is extracted from it in order to perform the update to the document itself.

The CRDT algorithm takes the positional operation and converts it into an identifier

operation to be added to its internal identifier list. If the operation is an insertion,

29

the identifier is added. If it is a deletion, then the identifier remains in the internal

list, but it becomes a tombstone. Deleted operations remain in the internal list in

order to allow for updates to maintain consistency. Once the operation is applied

and added to the document contents, there are essential checks and recordings which

must be performed in order to ensure consistency. To ensure updates are performed

casually, the current time of operation execution must be recorded and incorporated

into the update meta data to be returned. Next a new hash must be computed

and compared to the original update objects hash for guarantee that the file was

not corrupted during the update. Finally, the version of the document needs to be

updated according to the number of operations performed during the update. Once

all steps have been performed and the update object has received all necessary new

data, it can be returned and propagated to all remote clients. This system in theory

sounds simple, but ensuring consistency amongst all remote clients is far from easy.

The Automerge library is supposed to ensure correctness, but the usage of the library

requires many nuances to be implemented correctly. There are some faults in the

current CRDT implementation when integrating the new algorithm into Overleaf.

In order to test our implementation to see how well the CRDT algorithm could

handle multiple users performing edits on the same document, we developed multiple

scenarios to see what would happen. These scenarios are detailed in the next chapter.

During our testing we found that most of the time the edits were executed and

propagated to all clients smoothly. However, sometimes a notification appeared that

the documents had gone out of sync and a refresh needed to take place. This did not

happen often, but we wanted to find out why it was happening. We narrowed down

the refresh alert occurrence to times in which operations were submitted at the same

time. Details on this testing and possible reasons for this special case are discussed

in the next chapter.

30

When examining our implementation as a whole, we found that semi-realistic collab-

oration can be successfully performed. However, as mentioned earlier, if there are

operations which are submitted at the exact same time, the current implementation

is not able to properly handle both operations. The first operation which is han-

dled by the algorithm is successfully applied and propagated to all clients in close

to real-time. However, the second operation which is handled by the algorithm is

only applied locally to the user who submitted the update in real-time. The other

clients and users receive the update once a page refresh takes place. Once the page

automatically refreshes itself, or the user manually refreshes the page, all changes are

applied and each of the consistency requirements are met. This fault will be discussed

in further detail in the next section.

In order for changes to be applied and propagated to all clients, the current Overleaf

document system requires locks to be in place. There is a central database which

holds the master copies of the document. When a change is going to be applied,

a lock for the respective document must be acquired. Once the lock is in place,

the update may be applied, the lock can be released, and the document change can

be propagated to all clients. This centralized system of data is not necessary for a

CRDT implementation, but it is how the current system is operating. The possible

advancements for this system will be discussed in Chapter 8.

31

Chapter 5

EVALUATION

The following chapter performs an analysis on the results of OT and CRDT imple-

mentations in Overleaf in order to compare their real-time collaborative performance.

5.1 Overview

In this section, we discuss the performance results when testing Overleafs real-time

collaboration performance while utilizing an operational transform implementation as

well as a conflict-free replicated data type implementation. When evaluating real-time

collaboration performance, it is essential to observe the latency of updates as well as

the consistency of updates. Consistency in this context has multiple requirements in

order to achieve true consistency [24]. The first requirement is causality-preservation.

Causality preservation means that the operations which are performed must be exe-

cuted according to their their causal effect order[25]. Another requirement is version

consistency, also known as, convergence. Version consistency is achieved when all ver-

sions and remote replicas have the same resulting effects of the same set of performed

operations, meaning that all changes performed on the document replicas affect all

document replicas the same way and produce the same resulting document. The

final requirement for consistency is intention-preservation. Intention preservation is

achieved when the updates that are performed on the versions of the document result

in the updates which the user intended to be performed. This could be messed up

if user A intends to write ”dog” at position 3 of a document, while user B intends

to simultaneously write ”cat” in position 3 of a document. The users would expect

32

their operations to result in the document reading ”dog cat” or ”cat dog” or per-

haps if there was a high enough latency each individual user would only see their

own respective changes. However, if the operations became jumbled, the resulting

edit on all versions of the document may differ from the users’ intended result. For

example, the simultaneous operations could result in ”docagt”. Despite both users

seeing the same consistent result, their intention preservation does not prevail. It is

essential that real-time collaboration algorithms are capable of maintaining intention

preservation in order to allow for productive and useful collaboration. If each of the

aforementioned requirements for consistency are met, then the real-time collaboration

algorithm can be considered to maintain consistency. In order to effectively evaluate

real-time collaboration using the OT and CRDT algorithms, the performance evalu-

ation focused on each algorithms update latency, as well as how well each algorithm

met the requirements for consistency.

5.2 Testing Plan

The testing of OT and CRDT performance in Overleaf was executed on a Intel®

CoreTM i7-6600U CPU @2.60GHz, 2808 Mhz processor with two cores and four log-

ical processors. The measurements recorded include latency for single character in-

sertion, latency of single character deletion, as well as update consistency amongst

local user copies of the document. The free open source version of Overleaf which we

are working with does not allow end to end testing such as a simulation of multiple

threads running and manipulating the same document. Due to this limitation we had

to get creative in our validation of the basic insertion and deletion functionality as

well as how we examined the consistency results from user edits. We decided that the

closest and most reliable way to examine the consistency is through unit tests as well

as visual observations of the real-time collaboration between two users. By visual

33

observations of real-time collaboration between two users, we mean that we examine

the resulting documents for both users after edits are performed. This allows us to

examine if the operations result in the intended effects, if the documents all converge

to the same result and if the edits are being applied in the correct way. In order

to thoroughly examine the consistency, there will be multiple examined scenarios.

Scenario 1 will involve two users simultaneously editing separate sections of the doc-

ument, thus producing no conflicts. Scenario 2 will involve two users simultaneously

editing the document in the same position in order to intentionally cause conflicts.

Scenario 3 will involve users simultaneously adding items to a list in the same posi-

tion, thus causing a conflict. Each of the aforementioned scenarios will take place in

a round of insertion operations as well as a round of deletion operations. The final

scenario, scenario 4 will involve a more realistic collaboration scenario where users

are tasked with typing up a piece of text together and do not maintain any other

form of communication with each other besides the mouse location indicator for all

collaborating users on the document.

5.3 Performance of Operational Transform

The operational transform algorithm has been around for much longer than the

conflict-free replicated data type algorithm has. Operational transform has long been

regarded as the industry standard for implementing real-time collaboration thus re-

sulting in most, if not all, major commercial collaborative products utilizing opera-

tional transform in their implementations. Overleaf’s published version had opera-

tional transform implemented as its algorithm for allowing real-time collaboration.

Due to the fact that Overleaf and many other large collaborative products utilize op-

erational transform, we predicted that there would be high consistency results when

testing the consistency of the operational transform algorithm.

34

In order to gain a baseline of how operational transform performs, we focused on

user operations in the form of character insertions and character deletions. All real-

time collaboration on documents can essentially be broken down into insertions and

deletions. Overleaf has a source code section where users can collaboratively edit the

source code together which can be compiled into the resulting document. In order

to test the latency of updates between collaborative users, we timed the background

latency of how long it takes for the updates each user makes to be registered on the

other users versions. This was first measured with only one user performing updates

at a time, then it was later tested with both users simultaneously making updates to

the document. When performing latency tests on one user updating the document,

we measured the average time to update for insertion operations as well as deletion

operations. Based on an average of 50 insertions from a single user in a document, a

single user insertion of a single character has an average latency of 2.941 ms. Based

on the average of 50 deletions from a single user in a document, a single user deletion

of a single character has an average latency of 3.146 ms. In order to observe if

the latency timings were affected by multiple users editing the document at once, we

performed the same latency tests while two users were working together to perform the

operations. When two users were working to produce 50 insertions to the document,

there was an average insertion latency of a single character of 2.869 ms. When two

users were working together to produce 50 deletions in the document, there was an

average deletion latency of a single character of 3.188 ms. The aforementioned testing

scenarios which were performed demonstrate the latency timings for the operational

transform algorithm under the conditions which our computer was facing at that

time. Therefore these timings may vary depending on the internet connection at the

time of testing, as well as what processes are being ran on the computer at the same

time. These timings do give us insight into a potential average latency timing for

the OT algorithm under the various scenarios. Figure 5.1 gives a visual comparison

35

Figure 5.1: This figure provides a visual representation of the timing re-
sults for each of the editing scenarios utilized when examining the perfor-
mance of the operational transform algorithm.

of the timing results for each of the scenarios tested using the operational transform

algorithm which was originally implemented in Overleaf.

Consistency of the operational transform algorithm for real-time collaboration was

also tested through visual examinations of two user’s local editing environments. Dur-

ing this testing we also broke down most of the consistency scenarios into insertions

and deletions, thus, each of the discussed experiments took place in an insertion

version as well as a deletion version. We first had the users perform insertions and

deletions in two different locations of the document. This experiment met each of

the three requirements for consistency: causality preservation, version consistency

and intention preservation. When the users were performing insertions and deletions

at different positions of the document, all operations executed the expected effect,

and all replicated copies remained consistent. Next we tested the consistency of the

algorithm when purposely creating conflicts by performing insertion and deletion op-

36

erations in the same position by both users. This also resulted in full consistency.

We found no errors in intention or consistency when performing operations in the

same position at the same time when testing the operational transform algorithm.

Next we wanted to examine the effects on consistency when working with lists using

the operational transform algorithm. In order to try and cause conflicts in the list

ordering, the users simultaneously (at a human scale) attempted to perform the nec-

essary insertion and deletion operation in the same position of the list. When working

with lists, the operational transform algorithm continued to demonstrate consistency.

During the specific scenarios which we tested Overleaf’s original operational trans-

form implementation for handling real-time collaborative updates, the results were as

expected, and the algorithm performed well and met all consistency requirements.

As a final evaluation of operational transform’s performance, we tested the consis-

tency in a more realistic collaborative editing scenario. We tasked the two users in

typing up a defined text in the document. The users were unable to discuss or collab-

orate outside of their editing environments. This scenario was intended to simulate

a more realistic editing scenario in which users are performing insertion and deletion

operations as they naturally would when collaborating on a text document, with no

boundaries for potential conflicting user operations. The resulting updates and doc-

uments at the end of the testing scenario were as intended, and the documents were

consistent with all copies. Operational transform performed well in this experiment

and did achieve all requirements for consistency.

5.4 Performance of Conflict-free Replicated Data Types

Conflict-free replicated data types are the more recent idea behind implementing

real-time collaboration in comparison to when operational transform was founded.

37

Since CRDTs were first proposed, there have been claims of the superiority of CRDT

implementations over OT implementations, however, much of the previous research

which has been performed has not been able to prove or demonstrate the superiority

of CRDT over OT. The work which has been performed before has been theoretical

analysis comparing OT and CRDT algorithms. The purpose of implementing a CRDT

to perform the collaborative edit updates to a document was to allow for a real

implementation of a CRDT in a published product which was originally running using

an OT algorithm. At first thought we expected CRDTs to have better consistency

and update performance, however, after performing research and studying previous

works, our expectations for the consistency and timing performance of CRDTs were

lowered. In order to evaluate and understand our CRDT implementation in Overleaf,

we followed our testing plan and evaluated the performance of the CRDT algorithm

in a variety of situations which challenge the CRDT to expose implementation and

algorithmic flaws if any exist.

Our CRDT implementation which handled collaborative edits in Overleaf holistically

did not perform as well as the original OT algorithm. The exact results of both the

timing as well as the consistency of the CRDT algorithm in specific editing and collab-

oration scenarios will be discussed in this section. Possible reasons and explanations

for the performance will be discussed in the next chapter.

We first began our evaluation of the CRDT performance by examining the update

latency just as we did for our evaluation of OT performance. The update latency in

this context which we examined was the timing for the users update to be processed

and incorporated into all users replicated document editing sites. We performed the

CRDT and OT latency timing testing immediately after each other in order to try

and emulate the same testing environment for each. As mentioned earlier, latency

can be affected by many factors such as internet connection and background processes

38

on a computer. Therefore these timings more so provide insight into how the CRDT

and OT latency timings compare under similar environments. We followed the same

testing scenarios to evaluate the CRDT performance as we did to evaluate the OT

performance. The first scenarios were simple single character insertions and deletions

to the document by a single user. The latency for a single character insertion using the

CRDT algorithm based on the average timing for 50 individual character insertions

was 3.390 ms. The latency for a single character deletion using the CRDT algorithm

based on the average timing for 50 individual character deletions was 3.415 ms. The

next scenario which we used to evaluate algorithmic update latency was two users

performing insertions and deletions at the same time. We tested this scenario in order

to observe if there was a change in timing latency when more users were performing

edits to the document. The latency for a single character insertion based on an

average of 50 insertions performed by two users was 3.009 ms. The latency for a

single character deletion based on an average of 50 deletions performed by two users

was 3.209 ms. A visual representation of these timings is reflected in Figure 5.1. The

CRDT latency timings were similar to the OT latency timings in the same given

scenarios. Further analysis and discussion of the latency results will be discussed in

the next chapter.

After evaluating the latency performance of our CRDT implementation for handling

collaborative edits, we evaluated the CRDT implementations consistency. We used

the same scenarios to test the consistency as were mentioned in the testing plan

section. During our evaluation of the CRDT implementations consistency, we found

that the CRDT algorithm was able to reach eventual consistency in most cases.

When inserting into separate positions in the document with no conflicts, the CRDT

algorithm met all consistency requirements. When operations were not performed

simultaneously, the updates were executed and appeared in close to real-time and met

all consistency requirements. However, in each of the aforementioned scenarios, the

39

Figure 5.2: This figure provides a visual representation of the timing re-
sults for each of the editing scenarios utilized when examining the perfor-
mance of the conflict-free replicated data type algorithm.

CRDT algorithm met eventual consistency. This meant that when users performed

concurrent operations, the operations were applied locally in real-time, but the edits

were propagated and updated on the replicated copies once a refresh took place. Once

the refresh took place all requirements for consistency were met. When two users

inserted into the same location or deleted from the same location simultaneously,

there was eventual consistency. The same held true for concurrent insertions and

deletions for the same location in a list. The requirement for a refresh when concurrent

operations take place does not allow for smooth collaboration amongst remote clients.

The impact and possible reasons for this eventual consistency will be discussed in the

next chapter.

The final scenario which was tested for the CRDT algorithm was a realistic collab-

oration scenario where two users were tasked with typing up a piece of text into

the document. During this scenario the users were able observe each others edits in

40

real-time and successfully perform the collaboration. If the users performed exactly

concurrent edits, the editing environment notifies them that the documents are out

of sync and a refresh is required. Once the refresh took place, the updates were all

applied and consistency was maintained. This allowed for collaboration to take place

amongst the clients. Therefore, the CRDT algorithmic implementation would need

to continue to be developed in order for it to compete with the original OT algorithm

for effectiveness.

41

Chapter 6

DISCUSSION

This chapter discusses the results of testing the real-time collaboration performance

in Overleaf using OT and CRDT algorithms.

6.1 OT and CRDT Claims

When researching operational transform and conflict-free replicated data types, there

are the same general claims and statements which continue to appear. In most articles

OT is referred to as the standard practice for implementing real-time collaboration,

and CRDT is referred to as the newer way of implementing real-time collaboration

which has not been revealed to be implemented in any major collaborative products.

Despite the lack of CRDT implementations, there are many claims of superiority of

CRDT over OT [24, 25, 27, 28]. Some researchers have sought to verify these claims

[2, 25, 27, 28]. The previous research has all been theoretical, or a simulation of

how the algorithms would execute and perform on existing editing logs. Our research

sought to implement a CRDT algorithm in Overleaf and evaluate its performance.

Through this implementation and evaluation we hoped to compare the theoretical

findings to the real implementation results, as well as discuss the observed advantages

and disadvantages of OT and CRDTs. The following sections will discuss each of the

aforementioned goals and their results.

42

6.2 Comparison of the OT and CRDT Implementations

Overleaf is a widely used product which has been developed for many years now by

many engineers. It implements its real-time collaboration through operational trans-

form, the industry standard for implementing distributed collaboration. When first

beginning to work with Overleaf and examining its published product, the collabora-

tive aspect of its editing functionality appeared to work well for a typical collaborative

setting between two people, therefore we assumed the OT algorithm would be well-

performing. We also acknowledged that Overleaf as a whole was a very large and

complicated repository of code. This was a major hurdle which had to be tackled in

order to begin any work on this project. When reaching out to the engineers who

created Overleaf, their responses were skeptical in the possibility for one person to

implement a CRDT algorithm in Overleaf to replace the OT algorithm. Their skep-

ticism motivated this thesis to continue researching into the topic of CRDTs and to

continue working with Overleaf source code to see what we could accomplish. There

were many times when the project seemed impossible, yet we continued to persevere.

The resulting implementation focused on the handling and application of updates

to the existing document structure through a CRDT. Final results and evaluation

demonstrated that the CRDT implementation was fairly well performing and could

be further developed to be just as well performing as OT. There is still room for devel-

opment and research into CRDT. At this time using OT for implementing distributed

collaboration is the safer and more reliable choice.

In our testing and evaluation of the OT implementation which was already a part

of Overleaf, our assumptions were proved true. The first testing mechanism for OT

was through unit tests. The OT implementation passed all unit tests to ensure

basic insertion and deletion functionality correctness. We also included observational

43

testing using the web interface of Overleaf to see the correctness of the results given

various editing situations. As explained in the evaluation chapter, Overleaf’s original

OT implementation performed well and in each editing scenario it maintained all

three consistency requirements: convergence, intention preservation and causality

preservation. Since Overleaf is a published product with a pro version that can be

paid for, we expected it to be well performing with few noticeable errors to the

average user. Since we were beginning with a baseline implementation which already

performed well, it was a challenge to create an implementation to compete with the

original. Our CRDT implementation was able to reach similar results to that of the

OT implementation, with the exception of a few special cases which will be discussed.

Table 6.1 displays the results of our visual consistency checks amongst various editing

scenarios for the OT implementation as well as the CRDT implementation. We cre-

ated multiple editing scenarios to demonstrate if consistency was maintained. From

our testing we found that the operational transform algorithm was able to maintain

consistency in all scenarios including times when users performed concurrent opera-

tions in both the same and different locations of the document. This demonstrated

that the operational transform algorithm was very well performing and is able to

soundly handle conflicts without the clients noticing there were any. When exam-

ining the CRDT implementation, we found that the CRDT algorithm was able to

maintain consistency and allow for a realistic editing scenario in most cases. When

two users were editing the same document in their respective replicated editing sites,

their edits were executed and propagated to the other clients smoothly as long as

the edits were not performed at the exact same time. The special case of completely

concurrent edits caused the clients to be notified that the files had gone out of sync

and a refresh was needed. Once the refresh took place, both edits were preserved

and included in the document and the files maintained consistency. This is an im-

portant observation because despite the need for a refresh to take place in order to

44

handle concurrent operations, the edits of both users were maintained and not lost,

and the documents remained consistent. Despite our CRDT implementations ability

to maintain consistency after a refresh, there is still concern over how CRDTs han-

dle a server failure or an unreliable internet connection. In the future work chapter

we mention this as an area where further development could take place to enhance

the implementation and allow for more smooth collaboration when using the CRDT

implementation.

There are a few possible reasons as to why the CRDT implementation is not able

to handle the special case of two exactly concurrent updates taking place. One of

these possible reasons is that there may be a missing event alert. It is possible that

the updates each take place locally at the same time, but since each local document

version was busy performing their own update, the other editing clients are not made

aware of the other editing clients updates until a refresh takes place. Therefore an

event handler may be waiting until the local updates take place and a refresh happens

before the event handler is able to ensure all updates have been propagated to all

clients. This could possibly be solved by creating an update queue. There would

have to be an algorithm in place which handles the decision of which ordering the

concurrent updates are placed in the queue. The algorithm would have to produce

the same results each time when given the same inputs in order for this to work. Or

else the algorithm may produce different results on different editing clients and thus

result in inconsistency. With the editing queue, I imagine that an update would be

able to take place, be propagated to the clients and then the algorithm can handle

the next update in the queue. This idea may allow for all updates to be handled and

propagated to the others without the need for a refresh. Due to time constraints, this

thesis investigated this possible fix, but was not able to successfully implement it as

a solution.

45

Table 6.1: This table demonstrates the performance of the OT algorithm
as well as the CRDT algorithm under various scenarios when evaluated on
their ability to meet all requirements for true consistency.

Further comparison between the OT and CRDT implementations can be focused on

their respective latency timing for edits. Table 6.2 displays the edit latency’s for

the OT and CRDT algorithms in various editing scenarios. For the context of this

testing and evaluation of edit latency timings, we define the edit latency as the time

it takes from the edit first being received and processed till the time that the update

has been applied to the master document contained on the central server. The first

editing scenarios which were examined were single character insertions and deletions

46

performed by one user. For the OT implementation the average insertion latency

for one character was 2.941 ms and the average deletion latency for one character

was 3.146 ms. In comparison, the CRDT implementation had an average insertion

latency for a single character of 3.390 ms and an average deletion latency for a single

character of 3.415 ms. We also tested the edit latency timings when there were

two collaborators contributing the insertions and deletions to see if the added client

affected the timings. When there were two collaborators performing the insertions

and deletions the operational transform algorithm had an average single character

insertion latency of 2.869 ms and an average single character deletion latency of 3.188

ms. When there were two collaborators performing the insertions and deletions for

the conflict-free replicated data type algorithm, the average single character insertion

latency was 3.009 ms and the average single character deletion latency was 3.209 ms.

The edit latency timings for the OT implementation and the CRDT implementation

were very similar in all scenarios. We found that in each scenario the CRDT imple-

mentation had a slower edit latency than the OT implementation. The theoretical

research which has been done came to the conclusion that the CRDT algorithm is

theoretically slower than the OT algorithm [28, 27, 25]. Part of the reasoning for

the CRDT algorithm being slower is that the algorithm timing is affected by the

starting state of the document before an edit is performed. The CRDT algorithm

must populate its model with the contents of the original document before an initial

edit can be performed. This is not the same for the operational transform algorithm.

For OT the original contents do not matter. Thus, the original document could be

thousands of lines long and it wont affect the OT timing, but it will affect the CRDT

timing. Another reason is that the CRDT algorithm performs its edits by counting

and traversing the number of live objects, the search-count method. This alone is a

O(n) worst case scenario, but there are not only live objects to traverse and check, but

also tombstone objects which have been deleted from the document. These tombstone

47

Table 6.2: This table provides a clear comparison of the timing perfor-
mance of the edit latency’s for the OT and CRDT algorithms under various
editing scenarios.

objects could theoretically be removed through garbage collection, however, this is

hard to implement in practice and is yet to be included in the Automerge CRDT

implementation [13]. The CRDT algorithm is all identifier-based, each of the data

objects contains the respective unique identifier of that object as well as the respective

unique identifiers of its neighboring objects whether they are live or dead. Therefore

if tombstones were removed, neighboring data objects would be corrupted and their

now missing neighboring identifiers would need to be updated as well.

48

6.3 Advantages and Disadvantages of OT and CRDTs

This section will discuss the advantages and disadvantages of implementing real-

time collaborative editing on a text document using when respectively using an OT

implementation and a CRDT implementation.

6.3.1 OT

Operational transform has been the traditional replication mechanism for concurrent

document editing for many years now [2, 11, 16]. Due to its long standing reputation

as the traditional standard for concurrent document editing, there have been many

products which use OT in its collaborative platform such as Google Docs, Google

Colab and Jupyter [13]. Having highly regarded products utilize OT as its replica-

tion mechanism gives OT the advantage of being respected and having many people

who have investigated the algorithm and worked on solutions for many underlying

problems it may have in order to ensure easy collaboration of OT products. Along

with a more established reputation than CRDTs, OT algorithms also have faster la-

tency timings. Theoretical research has demonstrated that the edit latency for OT

algorithms are faster than those of CRDT algorithms [27]. This point of faster la-

tency timings was also demonstrated in the work of this thesis when implementing

a CRDT handling of text document edits to compare to the OT handling of text

document edits. The timings which came from the experiment demonstrated that

the OT algorithm appears to have a shorter latency time.

Some disadvantages of OT as the replication mechanism for concurrent document

editing include its centralization. OT relies on a centralized server for its network

communication. This does not allow for a peer to peer network and also means that

49

there could be personal information stored on a large central server. Large corpora-

tions which utilize centralized approaches to store the shared documents, may also

be storing personal information about the documents users as well. This could be

considered a privacy threat to users of these corporations [2]. There have been stud-

ies which claim that OT does not require a centralized server [25, 27, 28], but to our

knowledge a non-centralized OT replication mechanism is yet to be implemented in a

real product. Another disadvantage due to the transformation requirement amongst

concurrent updates in OT is that OT is not very scalable, meaning OT does not per-

form well when there are a large number of users performing concurrent operations

[2]. This lack of scalability for large numbers of collaborators is typically not of con-

cern because the number of users simultaneously collaborating on a single document

does not typically reach OTs limitations. There is a certain point in which there are

simply too many collaborators on a single document for the collaboration to still be

effective.

6.3.2 CRDT

Since CRDTs are the more recently proposed replication mechanism for concurrent

document editing, there is not as much trust in their ability nor as many examples

of products which use CRDTs. Even with CRDTs being proposed more recently

than OT, there is one advantage of CRDTs which commonly appears in literature:

CRDTs do not require a centralized server for network communication. The CRDT

library, Automerge, which was utilized in this thesis, is an example of a CDRT al-

gorithm which does not require a central server. The only network requirement for

Automerge is that all messages which are sent by a replica are eventually received

by all other replicas [13]. This essentially means that when a CRDT is used as the

replication mechanism in a text editor, a user can perform edits offline which will be

50

successfully merged with all other replicas of the document once back online while

still maintaining consistency. CRDTs rely on the mathematical properties of commu-

tativity, associativity and idempotency to guarantee that all replicas of any CRDT

will be able to converge in a consistent manner despite failures [22]. Much of the

research which has been performed prior believes that using a CRDT for distributed

real-time collaboration could be very successful. The work performed in this the-

sis demonstrates that even when using CRDTs to handle the edit processing, the

CRDT implementation performs similarly to the OT implementation. Their timing

differences are minuscule when observing with the human eye during a collaborative

session. Previous research has claimed that people comfortably work with changes

in collaborative settings when the response latency is less than 50ms [23, 12]. This

claim demonstrates that both the CRDT and the OT implementations performed

well within the limit for avoiding frustration amongst users during a collaborative

session. We believe that if the CRDT mechanism and ideology of server decentraliza-

tion was fully implemented, the CRDT implementation would out perform the OT

implementation. Due to time constraints this could not be proven in this thesis, but

this is an area of development which is discussed in the future work chapter.

Despite advantages of CRDTs, there are still some disadvantages which must be un-

derstood and considered. CRDTs for text editing rely on an ordered list of characters

to represent the text document. Each time a character is added to the text document,

it is also added to the ordered list. However, when a character is removed or deleted

from the text document, it remains in the list but is marked as invisible and stays as a

tombstone in the ordered list. This means that the CRDT data structure behind the

collaboration is exponentially growing and could produce slower and slower times for

very large documents. A possible solution for this would be to implement a garbage

collection algorithm to get rid of tombstones. Automerge does not currently have

garbage collection, but Dr. Kleppmann states that it is a work in progress which

51

the Automerge team hopes to release at some point [13]. The difficulty of garbage

collection is the inherent data structures which lie inside each object in the CRDTs

ordered list. Each character object in the list is identified by [(character), (id), (id-

NeighborBefore), (idNeighborAfter), (visibility)]. If a tombstone were removed, but

it has live, visible neighbors, then the neighbors internal object structure would have

an invalid id for its neighbors. This would cause issues in correctness of the algo-

rithm. A possible solution to this problem is to only remove tombstones which are

also neighbored by tombstones on both sides. If this were the case we believe that

the incorrect neighbors for the remaining tombstones would not cause issues since

they are not live in the document. Another possible solution could be to update the

neighboring id’s when removing a tombstone. Both of the aforementioned solutions

are merely ideas and have not been proven or attempted in this thesis.

6.4 Technical Problems In Distributed Collaboration Tools

When dealing with any type of large distributed system, replication and consistency

are essential features of that system [22]. The CAP theorem states that it is im-

possible to simultaneously ensure strong consistency (c), availability (a) and tolerate

network partition (p) [22]. Strong consistency is when all distributed server nodes

always contain the same, most up to date data. In order for this to be possible,

when one server node or client is editing the system or piece of data, there must be

a lock in place which does not allow any other nodes to contribute or make changes.

This locking requirement does not allow for availability, thus demonstrating the CAP

theorem. Therefore, distributed collaborative systems must rely on the principle of

eventual consistency, in which all server nodes will eventually be caught up and con-

tain consistent data. As mentioned before, in order to allow for efficient and effective

collaboration, this eventual consistency must happen very quickly. Performance is

52

a key factor when building distributed collaborative tools [13, 2, 6]. If updates and

changes are taking too long to be processed and propagated, the users will become

frustrated and will not have a good experience.

Due to the aforementioned requirements of collaborative tools, When creating/build-

ing distributed real-time collaboration there are a few problems which always come

up and need to be dealt with. One of the problems which come up are concurrent

edits which take place at the exact same time by two different clients on their indi-

vidual server nodes. One possible easy solution to dealing with conflicts would be to

discard all concurrent modifications. The problem with this solution is data loss [13].

It is important that the intended modification which a user executes is able to be

performed on the document. If users were continuously unable to have their changes

execute, they would not want to continue working with the editing platform.

The way operational transform algorithms typically handle this problem is through

operational transformations. The back end algorithm first locally applies the change,

then in its transformation stage it examines how the concurrent operations affect

each other and then adjusts the positional-based operations as needed. Once the

operational transformations take place, the operations are then propagated to all

other clients.

CRDT algorithm handles concurrent operations by first applying the update locally,

just as operational transform does. Then, the back-end processing applies the concur-

rent change by examining the positional argument and counting the number of objects

in the CRDTs ordered list before any of the concurrent operations took place. This

allows the underlying algorithm to determine the operations affect without the other

operations altering its result. If two concurrent operations affect each other, they are

adjusted accordingly and able to be merged. If inserting into the same position, there

are built in algorithmic decisions which determine which operation goes first. This

53

ensures all data is not lost, and that no matter what is determining the operational

ordering, the same inputs to the decision algorithm produce the same results each

time.

Another problem which appears with distributed collaborative editing when specif-

ically working with CRDTs, is the need for unique identifiers. Each CRDT imple-

mentation must develop a system of creating reliable and unique identifiers. Using

numerical identifiers has its limits which can be exceeded when working with ex-

tremely large documents. The way that the CRDT library Automerge handles this

problem in their implementation is through the use of lamport timestamps as their

unique identifiers. Lamport time stamps are a pair (c,p) in which p is the replica or

client id of the respective client. This id is typically a hash of the public key. The

c is a counter which is stored uniquely at each replica and keeps count of the total

number of operations performed. Since each replicas number of operations is strictly

monotonically increasing, the lamport time stamp is believed to always be unique

[13]. Based on our research in this thesis, Automerge’s claim to have found a solution

to the unique identifier problem seems to be correct. We are unable to identify a

problem with their method at this time.

Network connectivity and failure is a problem with all distributed systems. It is es-

sential for all distributed systems to be fault tolerant and successful in maintaining

availability in the system even with failure. This is where our current CRDT imple-

mentation in Overleaf fails. Our implementation works well except when concurrent

operations are performed. In this case, the web page must be reloaded in order to

have the concurrent operations applied and for the replicas to remain consistent.

This means that during the refresh, the system is unavailable to be worked on. This

problem is an area for future work beyond the time constraints of this thesis.

54

Chapter 7

CONCLUSION

The following chapter summarizes much of the research contained in this thesis, as

well as gives final concluding remarks on distributed real-time collaboration.

7.1 Distributed Real-Time Collaboration

Effective and efficient real-time collaboration is now more important than ever. Dur-

ing the COVID-19 pandemic most work places had to switch to remote work seemingly

overnight. This meant that teams which were previously working together in person,

now had to find ways to effectively collaborate and communicate online. One of the

major tools which allows for effective virtual teamwork is distributed real-time collab-

oration. No matter the tool which people choose to utilize when collaborating online,

there must be some sort of distributed collaboration algorithm in place which allows

for the application to perform. This thesis focused on researching and understanding

two major methods of implementing real-time collaboration through an operational

transform algorithm and a Conflict-free Replicated Data Type algorithm. The long

respected operational transform algorithm is what has been seen in most if not all

major collaborative services. There has been a lot of research which has taken place

on OT, as well as some theoretical research on the CRDT algorithm. This thesis set

out to create a real implementation of a CRDT algorithm in a collaborative product.

The resulting implementation using a CRDT algorithm as the consistency protocol

in Overleaf resulted in successful edit handling from multiple users except when the

edits were performed at close to concurrent times. This special case of concurrent

55

operations being performed requires more precise exact timing than we would have

expected. During testing there were times where we intended to purposefully cre-

ate concurrent edits which were registered as non-concurrent. Future work could

investigate how often edits to a collaborative document are registered as concurrent

edits in a realistic editing scenario. Our latency timing provides insight into how

our CRDT and OT algorithms performed under similar environments. These timings

could be affected by poor network connection, background processes, etc. Therefore

our research provides new insight into CRDT performance, but we conclude that

at this time in CRDT development, OT is still the more reliable methodology for

implementing distributed real-time collaboration.

The arguably most important goal of distributed real-time collaborative tools is that

the shared document should be just as easy to edit as is a single author document

[2]. Throughout this thesis there is a lot of discussion surrounding how to make the

collaborative environment as smooth and easy to work in as possible. Operational

transform has received a large amount of theoretical research as well as real world

implementations. Throughout the theoretical and non theoretical research, the oper-

ational transform mechanism for implementing real-time collaboration has been well

refined. Many problems which come with collaborative platforms such as concurrent

edits, data preservation and network availability have been researched and resolved

in OT implementations. CRDTs on the other hand have not received nearly the same

extent of research and development. Much of the previous research has been largely

theoretical with claims of superiority over the OT methodology. However, these claims

for the most part are merely claims. As demonstrated by this thesis, CRDTs have

similar performance to OT mechanisms when working with small sized documents

under similar conditions and handling editing updates using the OT and CRDT al-

gorithms. Due to time constraints this thesis implemented the algorithmic approach

of CRDTs to handle document edits, but it did not implement the decentralized

56

server methodology behind CRDTs. Previous research claims that the decentraliza-

tion ability of CRDTs makes them superior to OT implementations. This claim still

remains to be validated. This thesis gathers many pieces of research on mechanisms

for allowing distributed collaboration on text documents, as well as discusses previous

findings, the advantages and disadvantages of OT and CRDT algorithms and pro-

vides implementation and a discussion of a CRDT algorithm integrated into Overleaf,

a public collaborative editing product.

Overall, although OT has been long regarded as the standard for implementing real-

time collaboration, this thesis demonstrates that CRDTs should not be written off

as a failed idea. With continued research and development it is possible that CRDTs

could one day become refined enough to allow for effective distributed collaboration.

For now, if one desires to create a distributed collaborative platform, OT is the right

decision if looking for a well respected and tested mechanism for collaboration.

57

Chapter 8

FUTURE WORK

This chapter will discuss possible paths to further the research described in this thesis,

as well as possible areas of research to continue to expand upon CRDTs and real-time

collaboration algorithms in general. The original goal of this thesis was to create a

real, non-theoretical implementation of a CRDT algorithm, as well as research real-

time collaborative tools in general. These original goals were met, however, there are

still areas and topics which can continue to be researched, as well as expansion and

work which can be done to the CRDT implementation of Overleaf. Due to limited

time the future work which is outlined here was not able to be completed.

8.1 Expansion of the CRDT Implementation in Overleaf

This thesis presented the results of a CRDT algorithmic approach to handling up-

dates to a shared collaborative document. During the testing and evaluation of the

algorithm it was discovered that the CRDT implementation achieved consistency for

the most part. The special case in which two users perform exactly concurrent edits

failed to be properly propagated to all clients in real-time. This special case required

the client to refresh their page in order to see all updates and changes. However,

once the page was refreshed the CRDT algorithm demonstrated all requirements for

consistency: causality preservation, intention preservation and convergence. Future

work could be done to improve the CRDT implementation in Overleaf to not require

the pages to refresh in order to process concurrent updates. This would improve the

current implementation and allow for smoother collaboration amongst clients. The

58

closer to real-time in which updates appear on all clients, the better the collaborative

environment is.

Another possible expansion to the CRDT implementation in Overleaf is to redo the

current back end set up of their server communication. Research would have to be

performed which further examines Overleaf and its underlying LaTex environment

in order to fully understand if it would be possible to rewrite the back end to not

require a centralized server so that collaborative edits can be performed even when the

document is offline. From our current research in this thesis I believe that Overleaf

would not be suitable in its current state to benefit from a decentralized server. Since

Overleaf is an online web service, it appears as though it is a requirement for the

document to be online. However, research in this thesis did not focus on this topic,

therefore, this is an area which could be looked into in order to expand and perform

further research upon this thesis.

Further research could also be performed into allowing garbage collection in CRDT

algorithms. Since CRDTs are inherently exponentially growing based on their un-

derlying algorithm, their time and space complexities grow large in relation to the

size of the document. Automerge’s Dr. Kleppmann states that they are working on

and plan to release a garbage collection in the future. Their work, if successful, could

be integrated and developed on other CRDT libraries. If the garbage collection is

successful, this would address one of the major concerns of CRDT mechanisms and

possibly encourage further research and development into CRDTs.

59

BIBLIOGRAPHY

[1] Cal Poly Github. http://www.github.com/CalPoly.

[2] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso. Evaluating

CRDTs for Real-time Document Editing. In Proceedings of the 11th ACM

symposium on Document engineering, pages 103–112, 2011.

[3] S. B. Bellotti. Walking Away from the Desktop Computer: Distributed

Collaboration and Mobility in a Product Design Team. ACM conference on

Computer supported cooperative work, 1996.

[4] S. Burckhardt. Principles of Eventual Consistency. Foundations and Trends in

Programming Languages, 1(1-2):1–150, 2014.

[5] S. Cofalik and A. Tomanek. Lessons learned from creating a rich-text editor

with real-time collaboration. [Online]. Available from:

https://ckeditor.com/blog/Lessons-learned-from-creating-a-rich-text-editor-

with-real-time-collaboration/, Oct

2018.

[6] C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware Systems. ACM

SIGMOD Record, 18(2):399–407, June 1989.

[7] D. Engelbart and H. Lehtman. Working Together. Byte, 13(13):245–252, 1988.

[8] J. Gentle. ShareJS API. [Online]. Available from:

https://github.com/josephg/ShareJS. ShareJS.

[9] Google. Colaboratory. Accessed: Jun. 21, 2018. [Online]. Available:

https://research.google. com/colaboratory/faq.html. 2018.

60

[10] J. Hammersley and J. Lees-Miller. Collaborative editing us patent 9,729,672.

Google Patents, Aug. 8 2017. US Patent 9,729,672.

[11] P. Hedkvist. Creating a Collaborative Editor. [Online]. Available from:

https://www.pierrehedkvist.com/posts/1-creating-a-collaborative-editor,

2019.

[12] C. Jay, M. Glencross, and R. Hubbold. Modeling the Effects of Delayed Haptic

and Visual Feedback in a Collaborative Virtual Environment. ACM

Transactions on Computer-Human Interaction (TOCHI), 14(2):8–es, 2007.

[13] M. Kleppmann and A. R. Beresford. A Conflict-free Replicated JSON

Datatype. IEEE Transactions on Parallel and Distributed Systems,

28(10):2733–2746, 2017.

[14] M. Kleppmann and A. R. Beresford. Automerge: Realtime Data Sync Between

Edge Devices. In 1st UK Mobile, Wearable and Ubiquitous Systems

Research Symposium (MobiUK 2018), 2018.

[15] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,

K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,

and C. Willing. Jupyter Notebooks – a publishing format for reproducible

computational workflows. In F. Loizides and B. Schmidt, editors,

Positioning and Power in Academic Publishing: Players, Agents and

Agendas, pages 87 – 90. IOS Press, 2016.

[16] R. Levien. Towards a Unified Theory of Operational Transformation and

CRDT. [Online]. Available from:

https://medium.com/@raphlinus/towards-a-unified-theory-of-operational-

transformation-and-crdt-70485876f72f,

2016.

61

[17] S. Li, H. Jiang, and M. Shi. Redis-based Web Server Cluster Session

Maintaining Technology. In 2017 13th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD),

pages 3065–3069. IEEE, 2017.

[18] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma. Near Real-Time

Peer-to-Peer Shared Editing on Extensible Data Types. pages 39–49.

Proceedings of the 19th International Conference on Supporting Group

Work, 11 2016.

[19] Nunsus. Basic Idea Behind OT. [Online]. Available from:

https://commons.wikimedia.org/w/index.php?curid=7123571.

[20] C. Salamanca. The Mother of All Demos. [Online]. Available from:

https://escholarship.org/uc/item/91v563kh, 2009.

[21] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-Free

Replicated Data Types. In X. Défago, F. Petit, and V. Villain, editors,

Stabilization, Safety, and Security of Distributed Systems, pages 386–400,

Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[22] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-Free

Replicated Data Types. In Stabilization, Safety, and Security of Distributed

Systems, pages 386–400, Berlin, Heidelberg, 2011. Springer Berlin

Heidelberg.

[23] B. Shneiderman. Response Time and Display Rate in Human Performance

with Computers. ACM Computing Surveys (CSUR), 16(3):265–285, 1984.

[24] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving Convergence,

Causality Preservation, and Intention Preservation in Real-time

62

Cooperative Editing Systems. ACM Transactions on Computer-Human

Interaction (TOCHI), 5(1):63–108, 1998.

[25] C. Sun, D. Sun, Agustina, and W. Cai. Real Differences between OT and

CRDT under a General Transformation Framework for Consistency

Maintenance in Co-Editors. Proceedings of the ACM on Human-Computer

Interaction, 4:1–26, 2020.

[26] C. Sun, Y. Zhang, X. Jia, and Y. Yang. A Generic Operation Transformation

Scheme for Consistency Maintenance in Real-time Cooperative Editing

systems. In Proceedings of the international ACM SIGGROUP conference

on Supporting group work: the integration challenge, pages 425–434, 1997.

[27] D. Sun, C. Sun, A. Ng, and W. Cai. Real Differences between OT and CRDT

in Building Co-Editing Systems and Real World Applications. arXiv

preprint arXiv:1905.01517, 2019.

[28] D. Sun, C. Sun, A. Ng, and W. Cai. Real Differences between OT and CRDT

in Correctness and Complexity for Consistency Maintenance in Co-Editors.

Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1):1–30,

2020.

[29] G. Tato, M. Bertier, E. Rivière, and C. Tedeschi. ShareLatex on the Edge:

Evaluation of the Hybrid Core/Edge Deployment of a Microservices-based

Application. In Proceedings of the 3rd Workshop on Middleware for Edge

Clouds & Cloudlets, pages 8–15, 2018.

[30] R. Yasrab, J. Ferzund, and S. Razzaq. Challenges and issues in collaborative

software developments. arXiv preprint arXiv:1904.00721, 2019.

63

APPENDICES

Appendix A

CRDT CODE

1 applyUpdate(project_id , doc_id , update , lines , version , callback){

2

3 if (callback == null)

4

5 {

6

7 callback = function (error , updatedDocLines) {}

8

9 }

10

11 logger.log({ project_id , doc_id , update }, ’applying automerge

updates ’)

12

13 const jobs = []

14

15 const incomingUpdateVersion = update.v

16

17 let dup = false

18

19 // check to see if the update is a duplicate update of one which

has been handled

20 if(update.dupIfSource)

21

22 {

23

64

24 dup = true

25

26 }

27

28 let count = 0

29

30 let appliedOps = {}

31

32 const eventEmitter = new EventEmitter ()

33

34 // listener for the event that an operation has been applied

35 this._listenForOps(eventEmitter)

36

37 console.time("time to apply")

38

39 //wait till the next tick to ensure all clients receive the

update

40 // waiting lets the system confirm the clients

41 return process.nextTick(function () {

42

43 setTimeout (() => 3000)

44

45 //if this is the first operation applied create a new document

model

46 if(!doc)

47

48 {

49

50 console.log(" creating a new doc")

51

52 doc = Automerge.init()

53

65

54 doc = Automerge.change(doc , ’Add text ’, doc => {

55

56 doc.text = new Automerge.Text()

57

58 for (i = 0; i < lines.length; i++)

59

60 {

61

62 let lineLength = lines[i]. split(’’).length

63

64 if(lineLength > 0)

65

66 {

67

68 for(j = 0; j < lineLength; j++)

69

70 {

71

72 doc.text.insertAt(count , lines[i][j])

73

74 count ++

75

76 }

77

78 }

79

80 if(i != lines.length - 1)

81

82 {

83

84 doc.text.insertAt(count , ’\n’)

85

66

86 count ++

87

88 }

89

90 }

91

92 doc.boolValue = false

93

94 })

95

96 }

97

98 // record the old version of the document

99 const oldSnapShot = doc.text.toString ()

100

101 if (appliedOps[doc_id] == null)

102

103 {

104

105 appliedOps[doc_id] = []

106

107 }

108

109 if (!dup)

110

111 {

112

113 if(update.op)

114

115 {

116

117 appliedOps[doc_id].push(update)

67

118

119 }

120

121 for(const op of Array.from(update.op))

122

123 {

124

125 //this is for handling concurrent updates , there needs to

be position manipulation

126 if (version != update.v)

127

128 {

129

130 if(prevUpdate.d && prevUpdate.p <= op.p)

131

132 {

133

134 op.p -= prevUpdate.d.length

135

136 }

137

138 else if(prevUpdate.i && prevUpdate.p <= op.p)

139

140 {

141

142 op.p += prevUpdate.i.length

143

144 }

145

146 }

147

148 // handling of deletion operations

68

149 if(op.d)

150

151 {

152

153 let numDeletes = op.d.length

154

155 doc = Automerge.change(doc , ’deletion op ’, doc => {

156

157 //wait till the document isnt busy

158 while(doc.boolValue)

159

160 {

161

162 }

163

164 doc.boolValue = true

165

166 for(i = 0; i < numDeletes; i++)

167

168 {

169

170 doc.text.deleteAt(op.p)

171

172 }

173

174 doc.boolValue = false

175

176 })

177

178 }

179

180 // handling of insertion operations

69

181 else

182

183 {

184

185 let insertOp = op.i

186

187 let insertArray = insertOp.split(’’)

188

189 doc = Automerge.change(doc , ’insertion op ’, doc => {

190

191 //wait till the document isnt busy

192 while(doc.boolValue)

193

194 {

195

196 }

197

198 doc.boolValue = true

199

200 for (j = 0; j < insertArray.length; j++)

201

202 {

203

204 doc.text.insertAt(op.p + j, insertArray[j])

205

206 }

207

208 doc.boolValue = false

209

210 })

211

212 }

70

213

214 prevUpdate = op

215

216 }

217

218 }

219

220 else

221

222 {

223

224 // handling duplicate operations

225 metrics.inc(’sharejs.already -submitted ’)

226

227 logger.warn

228

229 (

230

231 { project_id , doc_id , update },

232

233 ’op has already been submitted ’

234

235)

236

237 update.dup = true

238

239 eventEmitter.emit(’applyOp ’, project_id , doc_id , update)

240 }

241

242 update.meta.ts = Date.now()

243

244 console.timeEnd ("time to apply")

71

245

246 // ensuring the document hash is correct and it is not

corrupted

247 if (update.hash != null && incomingUpdateVersion === version)

248

249 {

250

251 const ourHash = ShareJsUpdateManager._computeHash(doc.text.

toString ())

252

253 if (ourHash !== update.hash)

254

255 {

256

257 metrics.inc(’sharejs.hash -fail ’)

258

259 return callback(new Error(’Invalid hash ’))

260

261 }

262

263 else

264

265 {

266

267 metrics.inc(’sharejs.hash -pass ’, 0.001)

268

269 }

270

271 }

272

273 const docLines = doc.text.toString ().split (/\r\n|\n|\r/)

274

72

275 return process.nextTick(function () {

276

277 setTimeout (() => 3000)

278

279 eventEmitter.emit(’applyOp ’, project_id , doc_id , update)

280

281 if (version != update.v)

282 {

283

284 update.v = version

285

286 }

287

288 version += appliedOps[doc_id]. length

289

290 eventEmitter.emit(’op ’, update , doc.text.toString (),

oldSnapShot)

291

292 return callback(

293

294 null ,

295

296 docLines ,

297

298 version ,

299

300 appliedOps[doc_id] || []

301

302)

303

304 })

305

73

306 })

307

308 }

309

310 _listenForOps(eventEmitter) {

311

312 return eventEmitter.on(’applyOp ’, function (project_id , doc_id ,

opData) {

313

314 return ShareJsUpdateManager._sendOp(project_id , doc_id , opData

)

315

316 })

317

318 },

74

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Importance of Effective Tools for Collaboration
	1.2 Techniques for Real-Time Collaboration
	1.3 Our contributions
	1.4 Outline of Chapters

	2 BACKGROUND
	2.1 real-time Collaborative Tools
	2.2 Operational Transforms
	2.3 Conflict-free Replicated Data Types
	2.4 ShareJS
	2.5 Automerge
	2.6 ShareLaTex
	2.7 Redis

	3 RELATED WORK
	3.1 Comparisons of OTs and CRDTs
	3.1.1 Analysis of Logs from Collaborative Sessions

	3.2 Assessment of CRDT Performance

	4 IMPLEMENTING REAL-TIME COLLABORATION IN OVERLEAF
	4.1 Operational Transform
	4.2 Conflict-free Replicated Data Type

	5 EVALUATION
	5.1 Overview
	5.2 Testing Plan
	5.3 Performance of Operational Transform
	5.4 Performance of Conflict-free Replicated Data Types

	6 DISCUSSION
	6.1 OT and CRDT Claims
	6.2 Comparison of the OT and CRDT Implementations
	6.3 Advantages and Disadvantages of OT and CRDTs
	6.3.1 OT
	6.3.2 CRDT

	6.4 Technical Problems In Distributed Collaboration Tools

	7 CONCLUSION
	7.1 Distributed Real-Time Collaboration

	8 FUTURE WORK
	8.1 Expansion of the CRDT Implementation in Overleaf

	BIBLIOGRAPHY
	A CRDT Code

