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Abstract 17 

Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting 18 

and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus 19 

as a model system, we integrated experimental measurements of social aggregation, virus shedding, 20 

and disease-induced mortality from different genetic lines and sexes into a disease modelling 21 

framework. The experimentally measured host heterogeneity produced substantial differences in 22 

simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease 23 

dynamics at a population level. While this was true for homogeneous populations of single 24 

sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in 25 

simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, 26 

viral shedding and mortality, we compared simulations where we allowed these traits to vary, as 27 

measured experimentally, to simulations where we constrained variation in these traits to the 28 

population mean. In this context, variation in infectiousness, followed by social aggregation, was the 29 

most influential component of transmission. Overall, we show that host heterogeneity in three host 30 

traits dramatically affects population-level transmission, but the relative impact of this variation 31 

depends on both the susceptible population diversity and the distribution of population-level variation. 32 

 33 

Key words: Drosophila melanogaster, disease transmission, social aggregation, virus shedding, 34 
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36 



Introduction 37 

Individual heterogeneity in host traits affecting disease transmission has major consequences for the 38 

predictability and severity of outbreaks of infectious disease, and in extreme cases can lead to 39 

‘superspreaders’ or ‘supershedders’ of infection [1–3]. An individual’s transmission potential can be 40 

described as a function of: (1) its rate of contact with susceptible individuals, (2) the likelihood of that 41 

contact resulting in infection, and (3) the length of time that individual remains infectious [4,5]. It is 42 

therefore important to understand how common sources of variation, such as host genetic background 43 

and sex, may contribute to the variance in these traits and how individual variation may scale up to 44 

population level disease dynamics [4,6,7]. 45 

 46 

Disease dynamics may be disproportionately driven by individuals with extreme behavioural and 47 

physiological traits including social aggregation, pathogen shedding, or in the host’s SÍability to resist 48 

or tolerate the infection. For example, sex differences in immunity [8] or nutritional and thermal 49 

effects on host behaviours [9,10] can lead to differences in hosts’ ability to tolerate infection and 50 

consequently increase transmission rates. Similarly, there are also examples of genetic differences 51 

driving the extent of pathogen shedding [11] and behaviours that mediate contact between infected 52 

and susceptible individuals [12,13].  Quantifying these relevant behavioural, physiological and 53 

immune traits and their interactions remains tremendously challenging, particularly in wild or natural 54 

disease settings [4].  55 

 56 

One potentially useful approach is experimentally infecting model systems under controlled 57 

laboratory settings in order to quantify the roles of physiological and behavioural host heterogeneity 58 

on pathogen transmission [12,14,15]. This experimental approach offers the advantage of providing 59 

an experimentally tractable framework to partition the variance in individual transmission among a 60 

range of behavioural, physiological and immune phenotypes [4], while minimising environmental 61 

variation and allowing highly replicated measurements of individual host traits. However, such 62 

studies may be limited in their ability to extrapolate the effects of measured heterogeneity at the level 63 



of individual hosts to population-level epidemic dynamics. Mathematical modelling is a useful tool to 64 

efficiently test different hypotheses and infer patterns across scales [16], but many theoretical studies 65 

often rely on assumptions about the level of heterogeneity in host traits, in the absence of empirical 66 

data [4,5]. A helpful approach is therefore to use mathematical modelling of epidemiological 67 

dynamics whereas many parameters as possible are informed by experimental data measured on 68 

individual hosts in controlled laboratory settings. 69 

 70 

Here we combine experimental data and a simulation approach to test how population-level disease 71 

transmission dynamics are affected by experimentally measured levels of variation in pathogen 72 

shedding, lifespan following infection and social aggregation. We previously measured individual-73 

level variation in behavioural and physiological traits that are relevant to pathogen transmission in the 74 

fruit fly (Drosophila melanogaster) when infected with its viral pathogen Drosophila C Virus (DCV) 75 

[13,17].  DCV is a horizontally transmitted ssRNA virus of Drosophila. While relatively little is 76 

known about DCV dynamics in the wild, it appears to be common as a low-level persistent infection 77 

with apparently little pathology among several species of Drosophila [18,19]. Following what is 78 

presumably a predominantly fecal-oral route of transmission, DCV replicates in the fly’s reproductive 79 

and digestive tissues leading to intestinal obstruction, lower metabolic rate and reduced locomotor 80 

activity [20–22]. Some experimental work has also shown that cannibalism of infectious fly cadavers 81 

is a viable route of transmission, but it is unknown how common this transmission route is in the wild 82 

[23]. Previously, we observed sex-based and genetic-based variation in both locomotor activity and 83 

social aggregation following DCV infection [13]. We also showed that fly genetic background, sex 84 

and female mating status significantly influenced infected lifespan, viral growth, virus shedding, and 85 

viral load at death [17]. These experiments leveraged genetic and sex-specific sources of variation in 86 

three traits that likely affect individual transmission potential of DCV: the degree of group-level 87 

social aggregation (as an indicator of potential contact rate); how much DCV each individual sheds 88 

into its environment (as a proxy measure of infectiousness); and mortality rate (which defines the 89 

duration of infection).  90 

 91 



In the present study, we explore the interactions of social aggregation, viral shedding, and mortality 92 

on pathogen transmission when we: (1) vary population means of these traits; (2) vary the individual 93 

traits of the index case; and (3) constrain the variance of these traits in the population at large. First, 94 

we asked if genetic and sex-specific variation in the population means of social aggregation, virus 95 

shedding, and duration of infection – as measured in a lab setting – would result in different predicted 96 

epidemics in theoretical populations. By comparing simulated epidemics in host populations 97 

comprised of a single sex and one genetic background, we isolated genetic and sex-specific sources of 98 

variation in disease transmission. Second, to test the relative importance of the index case vs. group 99 

composition, we simulated epidemics in populations where the index case’s traits were sampled from 100 

a larger phenotypic distribution, including males and females from all ten genetic backgrounds. Third, 101 

to test the relative importance of variation in specific host traits on epidemic dynamics, we compared 102 

epidemic dynamics of populations exhibiting experimentally-measured levels of variation in social 103 

aggregation, viral shedding and mortality, to populations where we constrained variation in these 104 

traits to the population mean.  105 

106 



Methods 107 

Simulation model 108 

 We developed an individual-based, stochastic, discreate time model that tests how 109 

experimentally measured variation in host social aggregation, mortality, and viral shedding in D. 110 

melanogaster translates to differences in disease dynamics. The simulated contact networks 111 

underlying this model were generated from degree distributions derived from experimental 112 

measurements of social aggregation specific to the sex  and genetic line  present in the 113 

simulated population. Using a susceptible-infected-removed (SIR) process, we simulated direct 114 

transmission of DCV in a closed population with no births and where only infected individuals die 115 

[24]. We did not include background (i.e. non-disease related) mortality. Note that these transmission 116 

processes are consistent with other agent-based models that encompass contact heterogeneity[25].  117 

 Let the time step be equal to one day,  equal the number of susceptible hosts at time t, 118 

and  equal the number of infectious hosts at time t. The total number of hosts, , in the 119 

population at time t is represented by: . The number of susceptible (S) and infected 120 

(I) individuals at the next time step is given by: 121 

 122 

 123 

Here  is a vector of susceptible individuals at time , and is a vector of infected individuals 124 

at time . Therefore, the summations in both equations above iterate over individuals and not time 125 

steps. 126 

127 

128 

The processes of mortality  and transmission ( ) were individual-specific reflecting the 129 



covariates of sex  genetic line . More specifically, the transmission between a susceptible 130 

individual ( ) and infectious host ( ) is given by:  131 

 132 

where  represents the infectiousness of infectious host  and  represents whether or not an 133 

edge exists in the network between individuals  and  . Because of the uncertainty 134 

surrounding the DCV transmission process, we also include scaled infectiousness (η) and 135 

transmission efficiency of the pathogen (τ) as components of , which we discuss in further detail 136 

below. 137 

 For each susceptible individual  at each time step, transmission was a stochastic process 138 

governed by a Bernoulli draw based on the value of . Likewise, for each infectious individual ,  139 

mortality was a stochastic process stochastic processes based on a Bernoulli draw for the value of 140 

 Individuals removed during the mortality process no longer contributed to transmission 141 

dynamics.  142 

 143 

Experimental data distributions: Measuring social aggregation, viral shedding and mortality 144 

rate in infected D. melanogaster 145 

 We used experimental measurements of host social aggregation, mortality, and viral shedding from 146 

D. melanogaster infected with DCV (Figure 1a-c; note the heterogeneity among genotypes) to test 147 

how the sex-specific and genetic variation translates to differences in disease dynamics. An in-depth 148 

analysis of these experimental data has been carried out previously, showing substantial genotype-by-149 

sex interactive effects on each of these traits [13,17]. Briefly, we established systemic infections with 150 

DCV in males and females of ten lines (Table 1) from the Drosophila Genetic Resource Panel 151 

(DGRP) [26] and measured a number of traits including social aggregation [20], the infected lifespan 152 

and the viral shedding of each line-by-sex combination [17]. 153 

 Here, we focus on the frequency distributions of these data for each fly line and sex (Figure 154 

1), as the simulations described below were parameterized using these experimentally derived 155 



distributions. Of particular note is the distribution of viral shedding (Figure 1b), which showed 156 

substantial zero-inflation, due to many flies not shedding DCV in detectable quantities despite being 157 

infected.  158 

 159 

Social aggregation and contact network degree distribution 160 

 Social aggregation was measured by calculating the nearest neighbour distance (NND) from a 161 

photograph of groups of ten to twelve flies of the same genetic background, sex and infection status, 162 

in 55mm Petri dishes [13]. In accordance with other studies of D. melanogaster social aggregation 163 

[45], photos were taken of fly groups in Petri dishes following 30 minutes of acclimation to ensure 164 

minimal fly activity. Social aggregation was measured in n = 14–16 replicate groups of 12 flies for 165 

every combination of genetic background and sex (580 groups of flies in total).  166 

 The dynamics of faecal-oral DCV transmission are poorly understood [27,28], but the virus 167 

readily proliferates through laboratory stocks of Drosophila [29]. To account for this uncertainty in 168 

transmission mode and to assess the relative importance of possible direct transmission routes, we 169 

considered three threshold radii (10, 15 or 20mm) for feasible transmission. For each of these 170 

thresholds, the qualifying neighbours for each focal individual was calculated using the coordinates of 171 

each fly generated with the ImageJ multipoint tool.  172 

 To generate a simulated contact network reflecting contact rates of different phenotypes, we 173 

started by creating empirical contact networks where an individual (node) shared an edge in the 174 

network if they appeared within the prescribed threshold radius of the focal fly. Importantly, using 175 

social aggregation as a proximate measure of contact rate assumes the likelihood of contact with DCV 176 

is proportional to an individual’s proximity to an infected fly. Using the number of neighbours within 177 

this radius for each fly (i.e., unweighted degree centrality), we derived an empirical degree 178 

distribution for each genetic line and sex combination. From this empirical degree distribution, we 179 

sampled 1000 times with replacement to generate a larger degree distribution representing more 180 

individuals.  To produce a random graph with this given degree sequence, we then used the 181 

samp_degseq function from the igraph package [30].  Note that we resampled if the degree sequence 182 



summed to be odd. This produced a network where the mean degree (rather than network density) 183 

was maintained between experimental and simulated populations.  184 

 185 

Infectiousness. We estimated infectiousness (κj) for any given infected individual, j, from our 186 

experimental measurements of viral shedding [17]. Viral shedding was measured by housing single 187 

infected flies in 1.5ml Eppendorf tubes for 24 hours, removing the fly, washing out the tube with 50l 188 

of TRI-reagent to preserve viral RNA, and freezing this sample at -70C to await RT-PCR and qPCR. 189 

Each combination of sex and genetic background consisted of a minimum of 20 replicate flies, with 190 

most combinations  consisting of 32-38 shedding samples [17].  191 

 The untransformed distribution of this data was highly skewed and zero-inflated, with some 192 

rare flies shedding exceedingly high viral titres (i.e. supershedders)—over two orders of magnitude 193 

greater than the population mean—and others not shedding any virus at all (within the technical limit 194 

of detection). To account for this disparity, we used the natural log to transform our viral load shed 195 

distribution and then normalized values by the greatest amount of virus shed. This transformation 196 

yielded a distribution constrained between 0 and 1 with a median value of 0 and a mean value of 0.23. 197 

With this transformed distribution, only extreme supershedders at the upper end of the distribution 198 

would ensure a high probability transmission, with all other individuals had a probability much less 199 

than one. 200 

 Since the amount of virus needed to ensure DCV transmission is unclear, we also considered 201 

a ‘scaled infectiousness’ (η) parameter to explore what would happen if average or non-zero shedders 202 

could also shed enough to ensure infection. This scenario was implemented by multiplying our 203 

measure of infectiousness (κj) by 2. This step expanded the range of the transformed experimental 204 

distribution from 0 to 2. Note that for the Bernoulli trial determining whether a transmission event had 205 

occurred, the final transmission probability () was than capped at a maximum value of 1.  206 

 Finally, because the dosage and viability of DCV in the environment remain unclear, we 207 

included a transmission efficiency (τ) parameter in our model to account for this uncertainty. The 208 

three levels, τ = 0.1, 0.5, or 1, altered infectiousness and correspond to 10, 50, and 100% probability 209 



of transmission given contact. Both scaled infectiousness (η) and transmission efficiency (τ) were held 210 

constant in simulations unless specifically mentioned. 211 

 212 

Mortality rate. DCV results in death for infected flies, making our experimental measurement of the 213 

time between inoculation and death an ideal measure of mortality rate. Infected lifespan was 214 

measured by housing single flies in standard Lewis medium vials following systemic DCV infection 215 

and monitored daily until death. For eighteen of twenty sex and genetic background combinations, the 216 

lifespan following infection was measured for n=17-20, two combinations consisted of n=13 and 217 

n=15 flies [17]. For simulations, we calculated mortality rate, , as the inverse of 218 

experimentally-measured disease-related mortality for a given sex and genetic background.  219 

 220 

Simulation factorial design 221 

The effects of all parameters on outbreak dynamics were tested in a full-factorial design. For each 222 

parameter set, 500 simulations were conducted for a population of 1000 individuals over the course of 223 

1000 time steps (Tables 1-3). A wide variety of outbreaks of infectious disease were produced by 224 

different combinations of these parameters. To avoid datasets becoming predominated by fadeout, we 225 

have presented the outbreaks in populations defined by a set of parameters (r=15mm, τ =1, η=2) most 226 

conducive to outbreaks of infectious disease. Key metrics to measure outbreak dynamics included: 227 

fadeout probability, maximum number of infected individuals, outbreak duration, and time to 228 

maximum number of infected individuals. Fadeout probability represents the probability of an 229 

outbreak stochastically dying out [31]; in this case, we define it as the proportion of simulations 230 

where DCV fails to spread beyond the index case. We use R0 as a measure of the number of secondary 231 

cases of infection caused by the index case for the duration of the simulation. Code to conduct these 232 

simulations was written in R (Version 3.4.4) and is available at: 233 

https://github.com/whit1951/Drosophila 234 

235 

Random forest analysis  236 



Parsing out the effects of individual variables in simulation modelling can be challenging because of 237 

collinear effects and sensitivity of frequentist measures of significance to sample size. To further a 238 

descriptive discussion of our simulation results, we have used random forest analysis – a machine 239 

learning method that can handle complex, non-linear relationships between model inputs and outputs, 240 

as well as potential collinearity between covariates [32]. Random forest analysis is a recursive 241 

partitioning method that combines the predictions from numerous fittings of classification or 242 

regression trees to the same set of data [32,33]. A higher mean decrease in accuracy correlates with 243 

higher variable importance, i.e., more predictive power is lost if this variable is excluded from the 244 

analysis. For all three simulation experiments, we analysed outputs of: fadeout probability (whether 245 

the infection spread beyond initially infected individual), maximum prevalence, outbreak duration, 246 

and R0 (the number of secondary cases resulting from a single infectious individual in an entirely 247 

susceptible population). A detailed description of the analyses can be found in supplementary 248 

information and Figures S1-S3.  249 

250 



Results 251 

 252 

Simulation results 253 

Overall, our findings were robust to changes in various parameter combinations (Table 1). Threshold 254 

radius had strong effects on maximum prevalence but was not as strong predictor of a predictor of 255 

outbreak likelihood (Figures S1-S4). Here, we present results for a threshold radius of 15mm, a 256 

transmission efficiency of 1, and a scaled infectiousness of 2, which were generally representative of 257 

most parameter spaces. Summary figures for every parameter combination are presented in Figures 258 

S4-S15. 259 

 260 

Theoretical simulation #1: We scaled-up the experimental degree distributions for males and 261 

females of our ten genetic backgrounds to a theoretical population size of 1000. In each simulated 262 

population, flies were of the same sex and genetic background. We allowed infectiousness, duration 263 

of infection, and social aggregation to vary based on experimental measurements for each 264 

combination of sex and genetic background (Table 1). For each individual simulation, we generated a 265 

new network from the scaled-up degree distribution, and randomly selected an individual from the 266 

network to start as the index case. 267 

 268 

Individual variation in host infectiousness, social aggregation, and mortality rate produced 269 

variation in population-level, pathogen transmission dynamics. 270 

The variation in experimental treatment groups produced distinct outbreaks of infectious disease in 271 

populations comprised solely of one genetic background and sex (Figure 2a-d). This finding held true 272 

when comparing both genetic lines and sexes. For example, the median outbreak size for line 373 273 

females was ~200 flies compared to ~1 fly for line 373 males. In contrast the median outbreak size for 274 

line 818 females was ~1 fly, but approached ~500 flies for line 818 males.  Random forest analysis 275 

suggested that the two top predictors for outbreak likelihood were genetic and sex-specific variation 276 

(Figure S1). Given a successful outbreak, host genetic and sex-specific variation also affected the 277 



maximum number of infected individuals at any given time step (Figures 2c & S1) and outbreak 278 

duration (Figures 2d & S1). However, host genetic background and sex were less important than the 279 

threshold radius used to derive social network degree distribution for both outcomes (Figure S1) and 280 

less important than transmission efficiency for predicting the maximum number of infected 281 

individuals (Figure S1). 282 

 283 
Theoretical simulation #2: Many natural host populations have highly variable levels of genetic 284 

diversity which can significantly affect host-pathogen dynamics [34]. To test the relative importance 285 

of trait differences among potential index cases, we simulated populations where males and females 286 

of all ten genetic backgrounds were combined in equal proportion. More specifically, the simulated, 287 

scaled-up populations of 1000 individuals were comprised of 20 sub-populations each containing 50 288 

sampled individuals drawn from the larger experimental distribution for each respective line/sex 289 

combination. Individuals maintained their respective experimentally measured distributions for 290 

aggregation, infectiousness, and duration of infection according to their genetic background and sex 291 

combination. A connected network of these sub-populations was created by sampling an expected 292 

degree for each node based on its subpopulation traits and then using the samp_degseq function from 293 

the igraph package to create a random graph with the given degree sequence as described in the 294 

Methods [30]. Thus, flies with different covariate traits (as simulated from sampling from their 295 

respective experimental data distributions) could be connected in the network. These simulated 296 

populations therefore reflect a relatively diverse population. We then varied which genetic 297 

background and sex combination served as the index case (Table 1). We conducted 500 replicates per 298 

index case type. For each recorded replicate, the traits of the simulated population were resampled, 299 

and a new network was generated.  300 

 301 

Effects of the index case were outweighed by heterogeneity in the susceptible population. 302 

The genetic background or sex of the index case did not alter outbreak dynamics in diverse 303 

populations where 20 experimental treatment groups (all genotype by sex combinations) were equally 304 

sampled to create a heterogeneous population (Figure 3 & S2). This was true for all outbreak 305 



parameters (Figure 3 & S2). Based on the random forest analysis, threshold radius and transmission 306 

efficiency were the top two predictors for fadeout probability, maximum number of infected 307 

individuals, outbreak duration, and R0 (Figure S2). 308 

 309 

Theoretical simulation #3: To determine the relative importance of experimentally observed 310 

variation in social aggregation, viral shedding, and disease-related mortality on disease transmission 311 

in a heterogeneous population, we simulated heterogeneous populations derived from the variation 312 

seen across all genetic backgrounds and both sexes. To determine the effect of population-level 313 

variation, we iteratively constrained the variation in each three host traits to the population’s mean. 314 

During these simulations, the unconstrained traits were free to vary according to their experimentally 315 

determined distributions (Table 1). For example, to understand at the effect of variation in social 316 

aggregation in isolation, we constrained social aggregation to take on the experimentally determined 317 

mean degree distribution of the entire heterogeneous population but allowed viral shedding and 318 

mortality rate to vary according to their experimentally-measured distributions across all genetic 319 

backgrounds and both sexes. In the case of degree of the network, we rounded this value to ensure a 320 

whole number, which is essential for contact network formation (e.g., an individual cannot have 2.5 321 

contacts).  We also considered interactions between variability of these three traits (Table 1). 322 

 323 

Variation in infectiousness increased fadeout probability and decreased maximum prevalence of 324 

successful outbreaks, but increased outbreak duration. 325 

Constraining the infectiousness of a population to the mean (0.23, 0.46 for scaled infectiousness (η) 326 

levels 1 and 2, respectively) of the experimentally measured distribution increased the outbreak 327 

severity (Figure 4a), made outbreaks 2-fold more likely (Figure 4b), more than doubled the maximum 328 

prevalence (Figure 4a,c), and persisted in the population for longer (Figure 4a,d). Limiting variation 329 

in infectiousness also made outbreaks more predictable, reducing the variance of the time taken to 330 

reach the maximum number of infected individuals (Figure 4d). According to the random forest 331 



analysis, variation in infectiousness was the top predictor for whether or not an outbreak spread 332 

beyond the initially infected individual (Figure S3). 333 

 334 

Variation in social aggregation did not influence fadeout probability but made outbreaks more 335 

severe 336 

When social network degree distribution of simulated populations was confined to the mean of the 337 

experimental data (2, 3 and 4 for threshold radii of 10, 15 and 20mm respectively), outbreaks became 338 

less severe (Figure 3a) compared to simulations based on the complete degree distribution. Simulated 339 

DCV spread to fewer individuals (Figure 4c) and was quicker to die-out than in simulations where 340 

infectiousness, social aggregation, and mortality varied freely (Figure 4d). 341 

 342 

Variation in disease-related mortality did not affect epidemic outcomes. 343 

When constrained to the mean of the experimental data (13.6 days), we found disease-related 344 

mortality had little to no effect on any aspect of disease outbreak (Figure 4).  This is supported by the 345 

random forest analysis which identified variation in mortality rate as the least important predictor 346 

across outbreak metrics (Figure S3). 347 

 348 

Variation in infectiousness, followed by social aggregation, was the most influential component 349 

of transmission. 350 

An increase in the maximum number of infected individuals was only seen when variation in 351 

infectiousness was constrained. Interestingly the same effect was seen in simulations where other 352 

traits are constrained alongside virus shedding, despite this differing substantially from the effects of 353 

social aggregation and mortality rate when constrained alone (Figures 4 & S3). A similar, overruling 354 

effect was seen when social aggregation and mortality rate were constrained simultaneously, and virus 355 

shedding varied freely; outbreak dynamics were similar to the cases where only aggregation is 356 

constrained (Figures 4 & S3).  357 

 358 

  359 



Discussion  360 

Here, we investigated how host genetic background and sex may contribute to the variance in social 361 

aggregation, infectiousness and mortality and how this variation may scale up to population level 362 

disease dynamics. We found substantial between-individual differences in pathogen transmission, 363 

constituting genetic and sex-specific variation in transmission potential. Crucially, in relatively 364 

homogenous populations comprised of single sex and genotype combinations, heterogeneity in the 365 

index case produced major differences in population-level outbreak dynamics, including making 366 

outbreaks more likely, broader reaching, and longer lasting. However, variation in the index case’s 367 

transmission potential exerted little influence over population-level outbreak dynamics in diverse host 368 

populations. We also found that population-level variation in social aggregation, virus shedding, and 369 

disease-related mortality affected outbreak dynamics in starkly contrasting ways. This effect appeared 370 

to be linked to the population-level distribution of each respective host trait, with factors such as 371 

skewness and zero-inflation influencing how variation in each trait affected outbreak dynamics.  372 

 373 

In simulation experiment #1, males from the RAL-818 genetic background were not only more likely 374 

to start an outbreak of infectious disease, but these outbreaks were also more severe than in other 375 

populations. This suggests these males represent a class of individuals with a high transmission risk. 376 

Interestingly, high-risk males are seen in a number of host-pathogen systems [35,36]. While high-risk 377 

male classes can be produced by a range of traits pertaining to sex-specific ecology or physiology, 378 

their occurrence across systems is likely driven by sexual selection shaping male traits affecting 379 

transmission [37]. For example, in the yellow-necked mouse, Apodemus flavicollis, males are thought 380 

to be a high-risk class due to a range of sex differences in their immune response, home range and 381 

contact rates [35]. Moreover, as male Drosophila exhibit a number of other traits with the potential to 382 

alter their transmission potential, such as male-male fighting [38], the transmission risk of RAL-818 383 

males could increase further. Focussing on classes of high-risk individuals is a more pragmatic 384 

approach to reducing the effect of heterogeneity in transmission potential, requiring less intensive 385 

monitoring protocols [4]. Additionally, as classes of individuals are identified using ranges of 386 

physiological or behavioural traits, classes are potentially more generalisable to other host-pathogen 387 



systems (e.g. sex, social dominance). Many studies of transmission heterogeneity in natural systems 388 

focus on using either behavioural or physiological traits to infer transmission dynamics and identify 389 

high-risk individuals [2,4]. Our results highlight the importance of disentangling the relative 390 

contributions made by behavioural and physiological traits together in order to infer variation in 391 

transmission potential.  392 

 393 

High-risk individuals, such as superspreaders, present a challenge to current methods of disease 394 

control because they are capable of starting outbreaks of infectious disease that are difficult to predict 395 

and amplifying them once transmission begins [39,40]. Pre-emptively identifying high-risk 396 

individuals is therefore a major aim of epidemiology and disease ecology. However, in the second 397 

theoretical experiment we conducted, we found that starting outbreaks with individuals that differed 398 

in transmission potential did not affect outbreak dynamics when susceptible populations are 399 

genetically diverse. Our results therefore suggest outbreaks are not solely driven by the traits of rare, 400 

high-risk individuals, but are also affected by the traits of the susceptible population. High-risk 401 

individuals were unable to cause explosive outbreaks of infectious disease when surrounded by low-402 

risk individuals as presumably, once infected, low-risk individuals failed to transmit disease to the rest 403 

of the population. Similar transmission dynamics have also been observed in laboratory populations 404 

of the social spider, Stegodyphus dumicola, where transmission of a bacterial pathogen was affected 405 

by the boldness of the index case and the individuals it interacted with [14], but ultimately traits of the 406 

index case did not alter transmission dynamics compared to the collective traits of the susceptible 407 

population. Together with our results, these findings do not suggest diversity in the susceptible 408 

population is a universal buffer to the effects of between-individual heterogeneity in disease 409 

transmission. Instead, this work highlights the necessity to characterise population diversity in the 410 

context of social interactions and networks as these may determine the relevance of this diversity. 411 

Population-level diversity is particularly important in host-pathogen systems where behavioural 412 

changes occur following infection. In populations of the guppy, Poecilia reticulata, for example, 413 

male, but not female, sociality has been shown to increase following infection. As a result, females 414 

social males are more likely to interact with, and infect, females [12]. There are many traits across 415 



species that bias social interactions, such as sexual receptivity or personality type [41]. Should these 416 

traits bias contact between transmission classes, this may explain why social and transmission 417 

networks rarely match.  418 

 419 

Extreme phenotypes often play a key role in between-individual heterogeneity in disease 420 

transmission. However, being a relative term, ‘extreme’ phenotypes are defined by population-level 421 

variation. Constraining population-level variation in the amount of virus shed following infection to 422 

the population mean increased outbreak likelihood and severity. This was likely a result of the huge 423 

zero-inflation of the distribution of virus shedding, where many infected individuals did not shed 424 

virus. These individuals, previously termed ‘supersponges’ [42], represent the left-most extreme of 425 

the population distribution, and bore no transmission risk. While some of the individuals that do not 426 

transmit infection may simply not get any transmission opportunity, others may be supersponges and 427 

therefore incapable of transmitting disease. The presence of supersponges also demonstrates the 428 

importance of measuring variation in both behavioural and physiological traits when seeking to 429 

understand heterogeneity in disease transmission. Characterising extreme forms of population-level 430 

variation, particularly in natural systems where experiments are less controlled, should certainly be 431 

prioritised in order to understand individual heterogeneity in disease transmission. 432 

 433 

An important caveat of our results is that because we did not measure social aggregation, virus 434 

shedding and lifespan simultaneously we cannot account for how they might covary within 435 

individuals. We therefore allow them to co-occur in hosts randomly, which may not reflect 436 

associations produced in nature or potential combinations of traits that are not likely due to 437 

physiological or evolutionary constraints. This is particularly true for how we estimated contact 438 

behaviour from social aggregation arenas containing 10-12 flies and measuring 55mm wide. For our 439 

simulations, we scaled-up these smaller populations to create theoretical populations of 1000 440 

individuals. This approach was required by the experimental demands of measuring social 441 

aggregation, although it is known that social aggregation changes may change with population size 442 

and sex ratio [43,44]. 443 



 444 

 Threshold radius was a singularly important parameter across our theoretical experiment. 445 

Understanding how distance affects pathogen transmission or definitions of what constitutes a contact 446 

remains poorly described in many host-pathogen systems [7]. Moreover, real networks may have 447 

different structures not accounted for here, such as a modular structure which has been shown to 448 

facilitate or prevent the spread of disease [44,45]. As our social aggregation data comes from Petri 449 

dishes containing only males or females from a single genetic background, we cannot account for how 450 

aggregation might change in more diverse and larger populations[43].  451 

 452 

Our work bears a number of consequences for understanding how between-individual heterogeneity 453 

in disease transmission is determined and how it could affect outbreak dynamics. We show that 454 

variation in key individual traits can dramatically affect population-level transmission, surmounting to 455 

genetic and sex-specific variation in transmission potential. Importantly, the influence of this variation 456 

is dramatically affected by susceptible population diversity and the distribution of population-level 457 

variation. These results support the observations of other systems that suggest the traits of susceptible 458 

individuals can exert significant influence over transmission. This is particularly relevant to 459 

populations with low genetic diversity, such as agricultural monocultures, as this lack of diversity 460 

increases the risk of explosive outbreaks [46]. Our work posits the merits of integrating data collected 461 

in highly controlled laboratory experiments with simulations capable of extrapolating this information 462 

to larger populations.  463 
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 601 

Figure 1 – The epidemiological model was parameterised by sampling frequency distributions of 602 

experimental data collected from female and male ten Drosophila Genetic Reference Panel lines 603 

infected with DCV published previously [13,17]. Here, we provide a qualitative description of these 604 

data.  a) social aggregation: the average number of neighbouring flies present within a 15mm radius 605 

of each focal fly; b) infectiousness: the number of viral copies shed per fly within the first 3 days 606 

following infected, as measured by DCV-specific qPCR; c) the day of death of each individual 607 

infected fly. Detailed analysis showing extensive line-by-sex interactive effects are reported in 608 

[13,17].  609 
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614 

Figure 2 – a) Simulation time courses of populations comprised of either male (red) or female (blue) 615 

individuals of the same sex and genetic background (columns) for simulation experiment #1. Across 616 

all of these simulations, parameters outside of host genetic background and sex are fixed; threshold 617 

radius (r)= 15mm, transmission efficiency (τ)=1 and scaled infectiousness (η)=2. (b-d) Summary 618 

statistics of simulations of populations comprised of male (red) or female (blue) individuals of the 619 

same genetic background (x-axis) for (b) the proportion of simulations that resulted in fadeout; and, in 620 

the subset of simulations where fadeout did not occur and disease spread from the index case; (c) the 621 

maximum number of infected individuals at any given time step; and (d) the number of time steps 622 

infected by the index case. Shown for threshold radius (r)= 15mm, transmission efficiency (τ)=1 and 623 

scaled infectiousness (η)=2.  A random forest analysis was used to determine the relative importance 624 

of genetic background and sex to each summary statistic used to describe outbreak dynamics (Figure 625 

S1).  626 

(a)

(b) (c) (d)
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 629 

630 

Figure 3 – Simulation time courses of populations comprised of all ten genetic backgrounds and 631 

males (red), and females (blue) in equal proportion, where the index case of an outbreak is an 632 

individual of a specific genetic background and sex (simulation experiment #2). Across all of these 633 

simulations, other parameters are fixed: threshold radius (r)= 15mm, transmission efficiency (τ)=1 634 

and scaled infectiousness (η)=2. A random forest analysis was used to determine the relative 635 

importance of genetic background and sex to each summary statistic used to describe outbreak 636 

dynamics (Figure S2).     637 
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640 

Figure 4 – a) Simulation time courses of populations where aggregation, infectiousness and duration 641 

variation are derived from the entire population’s variation rather than for a single genetic line and sex 642 

combination (simulation experiment #3). In each panel, the variation of a particular set of components 643 

is confined to the population’s mean. Across all of these simulations, parameters outside of host 644 

genetic background and sex are fixed: threshold radius = 15mm, transmission efficiency =1 and 645 

scaled infectiousness =2. (b-d) Summary statistics of time course simulations where individual 646 

variation is determined by the variation seen across all genetic backgrounds and sexes (simulation 647 

experiment #3). The x-axis of all panels sees variation in aggregation (A), infectiousness (I) and 648 

mortality rate (D), and all their combinations fixed to the population mean. Outbreak metrics include: 649 

b) the proportion of simulations that resulted in fadeout; c) the maximum number of individuals 650 

infected during the simulation; and d) the time until maximum prevalence was reached. Shown for 651 

threshold radius = 15mm, transmission efficiency =1, and scaled infectiousness =2. A random forest 652 

analysis was used to determine the relative importance of genetic background and sex to each 653 

summary statistic used to describe outbreak dynamics (Figure S3). 654 
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Parameter Levels Simulation 1 Simulation 2 Simulation 3 

Population 

genetic 

background 

RAL-59, RAL-

75, RAL-138, 

RAL-373, RAL-

379, RAL-380, 

RAL-502, RAL-

738, RAL-765, 

RAL-818 

X   

Population sex Female, Male X   

Index genetic 

background 

RAL-59, RAL-

75, RAL-138, 

RAL-373, RAL-

379, RAL-380, 

RAL-502, RAL-

738, RAL-765, 

RAL-818 

 X  

Index sex Female, Male  X  

Threshold 

radius (r) 

10mm, 15mm, 

20mm 

 

X X X 

Pathogen 

transmission 

efficiency (τ) 

0.1, 0.5, 1 

 

X X X 

Scaled 

infectiousness 

(η) 

1, 2 X X X 

Vary social 

aggregation 

TRUE, FALSE   X 

Vary 

infectiousness 

TRUE, FALSE   X 

Vary infection 

duration 

TRUE, FALSE   X 

 657 
Table 1. Parameters used to simulate outbreaks of infectious disease in simulations 1-3. Simulation 1 658 

tested the effect of genetic and sex-specific variation in social aggregation, viral shedding and 659 

susceptibility on population-level disease dynamics. Simulation 2 tested the effect of susceptible host 660 

diversity on disease transmission potential. Simulation 3 tested the effect of variation in social 661 

aggregation, infectiousness and infection duration on population-level disease transmission dynamics. 662 

We conducted 500 replicates per parameter set with 1000 individuals in the network. Simulations 663 

were allowed to run for 1000-time steps. 664 


