380 research outputs found
Conductance of a tunnel point-contact of noble metals in the presence of a single defect
In paper [1] (Avotina et al. Phys. Rev. B,74, 085411 (2006)) the effect of
Fermi surface anisotropy to the conductance of a tunnel point contact, in the
vicinity of which a single point-like defect is situated, has been investigated
theoretically. The oscillatory dependence of the conductance on the distance
between the contact and the defect has been found for a general Fermi surface
geometry. In this paper we apply the method developed in [1] to the calculation
of the conductance of noble metal contacts. An original algorithm, which
enables the computation of the conductance for any parametrically given Fermi
surface, is proposed. On this basis a pattern of the conductance oscillations,
which can be observed by the method of scanning tunneling microscopy, is
obtained for different orientations of the surface for the noble metals.Comment: 8 pages, 5 figure
Theory of oscillations in the STM conductance resulting from subsurface defects (Review Article)
In this review we present recent theoretical results concerning
investigations of single subsurface defects by means of a scanning tunneling
microscope (STM). These investigations are based on the effect of quantum
interference between the electron partial waves that are directly transmitted
through the contact and the partial waves scattered by the defect. In
particular, we have shown the possibility imaging the defect position below a
metal surface by means of STM. Different types of subsurface defects have been
discussed: point-like magnetic and non-magnetic defects, magnetic clusters in a
nonmagnetic host metal, and non-magnetic defects in a s-wave superconductor.
The effect of Fermi surface anisotropy has been analyzed. Also, results of
investigations of the effect of a strong magnetic field to the STM conductance
of a tunnel point contact in the presence of a single defect has been
presented.Comment: 31 pages, 10 figuers Submitted to Low. Temp. Phy
Little groups of irreps of O(3), SO(3), and the infinite axial subgroups
Little groups are enumerated for the irreps and their components in any basis
of O(3) and SO(3) up to rank 9, and for all irreps of C, C, C, D and D. The results are obtained
by a new chain criterion, which distinguishes massive (rotationally
inequivalent) irrep basis functions and allows for multiple branching paths,
and are verified by inspection. These results are relevant to the determination
of the symmetry of a material from its linear and nonlinear optical properties
and to the choices of order parameters for symmetry breaking in liquid
crystals.Comment: 28 pages and 3 figure
Reflections on undertaking the Probation Qualifying Framework scheme during the transforming rehabilitation changes
This article reflects upon the author’s experience of undertaking the PQF (Probation Qualifying Framework) training scheme during the chaotic period of Transforming Rehabilitation. The author asserts that the uncertainty and precarious nature of the changes were detrimental to an effective learning environment, which ultimately promoted a practice culture of punitiveness and control and did not allow learners the space to be skilful and confident practitioners, comfortable working autonomously. Furthermore, the author contends there is an emerging culture within the NPS (National Probation Service) increasingly fostered on ‘risk management’, which is reflected in the vocational nature of PQF training and is contributing towards a widening cultural gap that is emerging between the community rehabilitation companies and NPS
Spatial Correlation of Conduction Electrons in Metal with Complicated Geometry Of The Fermi Surface
The "density-density" correlation function of conduction electrons in metal
is investigated. It is shown, that the asymptotic behaviour of the CF depends
on the shape and the local geometry of the Fermi surface. In particular, the
exponent of power law which describes the damping of Friedel oscillations at
large r (-4 for an isotropic Fermi gas) is determined by local geometry of the
FS. The applications of the obtained results to calculations of the CF in a
metal near the electron topological transition and of the RKKY exchange
integral are considered as well.Comment: 12 pages, LaTeX, 5 figures upon request (to appear in J.Phys.:CM,
1993
A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly
A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition-fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy-amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA
Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni
We calculate magnetic anisotropy energy of Fe and Ni by taking into account
the effects of strong electronic correlations, spin-orbit coupling, and
non-collinearity of intra-atomic magnetization. The LDA+U method is used and
its equivalence to dynamical mean-field theory in the static limit is
emphasized. Both experimental magnitude of MAE and direction of magnetization
are predicted correctly near U=4 eV for Ni and U=3.5 eV for Fe. Correlations
modify one-electron spectra which are now in better agreement with experiments.Comment: 4 pages, 2 figure
Order parameter symmetry in ferromagnetic superconductors
We analyze the symmetry and the nodal structure of the superconducting order
parameter in a cubic ferromagnet, such as ZrZn. We demonstrate how the
order parameter symmetry evolves when the electromagnetic interaction of the
conduction electrons with the internal magnetic induction and the spin-orbit
coupling are taken into account. These interactions break the cubic symmetry
and lift the degeneracy of the order parameter. It is shown that the order
parameter which appears immediately below the critical temperature has two
components, and its symmetry is described by {\em co-representations} of the
magnetic point groups. This allows us to make predictions about the location of
the gap nodes.Comment: 12 pages, ReVTeX, submitted to PR
Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373
- …
