39,203 research outputs found

    The origin of the diffuse galactic IR/submm emission: Revisited after IRAS

    Get PDF
    Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses

    Causal Inference When Counterfactuals Depend on the Proportion of All Subjects Exposed

    Full text link
    The assumption that no subject's exposure affects another subject's outcome, known as the no-interference assumption, has long held a foundational position in the study of causal inference. However, this assumption may be violated in many settings, and in recent years has been relaxed considerably. Often this has been achieved with either the aid of a known underlying network, or the assumption that the population can be partitioned into separate groups, between which there is no interference, and within which each subject's outcome may be affected by all the other subjects in the group via the proportion exposed (the stratified interference assumption). In this paper, we instead consider a complete interference setting, in which each subject affects every other subject's outcome. In particular, we make the stratified interference assumption for a single group consisting of the entire sample. This can occur when the exposure is a shared resource whose efficacy is modified by the number of subjects among whom it is shared. We show that a targeted maximum likelihood estimator for the i.i.d.~setting can be used to estimate a class of causal parameters that includes direct effects and overall effects under certain interventions. This estimator remains doubly-robust, semiparametric efficient, and continues to allow for incorporation of machine learning under our model. We conduct a simulation study, and present results from a data application where we study the effect of a nurse-based triage system on the outcomes of patients receiving HIV care in Kenyan health clinics.Comment: 23 pages main article, 23 pages supplementary materials + references, 4 tables, 1 figur

    Pressure-Induced Insulating State in Ba1-xRExIrO3 (RE = Gd, Eu) Single Crystals

    Full text link
    BaIrO3 is a novel insulator with coexistent weak ferromagnetism, charge and spin density wave. Dilute RE doping for Ba induces a metallic state, whereas application of modest pressure readily restores an insulating state characterized by a three-order-of-magnitude increase of resistivity. Since pressure generally increases orbital overlap and broadens energy bands, a pressure-induced insulating state is not commonplace. The profoundly dissimilar responses of the ground state to light doping and low hydrostatic pressures signal an unusual, delicate interplay between structural and electronic degrees of freedom in BaIrO3

    The southern dust pillars of the Carina Nebula

    Get PDF
    We present preliminary results from a detailed study towards four previously detected bright mid-infrared sources in the southern part of the Carina Nebula: G287.73--0.92, G287.84--0.82, G287.93--0.99 and G288.07--0.80. All of these sources are located at the heads of giant dust pillars that point towards the nearby massive star cluster, Trumpler 16. It is unclear if these pillars are the prime sites for a new generation of triggered star formation or if instead they are the only remaining parts of the nebula where ongoing star fromation can take place.Comment: 2 pages, to appear in the proceedings of "Hot Star Workshop III: The Earliest Phases of Massive Star Birth" (ed. P.A. Crowther

    Multiple Molecular H2 Outflows in AFGL 618

    Full text link
    We report high spatial (0.5 arcsec) and high spectral (9 km/s) resolution spectro-imaging of the 2.12 micron H2 1-0 S(1) line in the proto-planetary nebula AFGL 618 using BEAR at the CFHT. The observations reveal the presence of multiple, high-velocity, molecular outflows that align with the remarkable optical jets seen in HST images. The structure and kinematics of the outflows show how jets interact with circumstellar gas and shape the environment in which planetary nebulae form.Comment: 14 pages, 5 figures. To appear in The Astrophysical Journal Letter

    Structure and thermodynamics of a mixture of patchy and spherical colloids: a multi-body association theory with complete reference fluid information

    Get PDF
    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.Comment: arXiv admin note: text overlap with arXiv:1601.0438

    Mediation of Long Range Charge Transfer by Kondo Bound States

    Get PDF
    We present a theory of non-equilibrium long range charge transfer between donor and acceptor centers in a model polymer mediated by magnetic exciton (Kondo) bound states. Our model produces electron tunneling lengths easily exceeding 10A˚\AA, as observed recently in DNA and organic charge transfer systems. This long ranged tunneling is effective for weak to intermediate donor-bridge coupling, and is enhanced both by weak to intermediate strength Coulomb hole-electron attraction (through the orthogonality catastrophe) and by coupling to local vibrational modes.Comment: Revised content (broadened scope, vibrations added), submitted to Phys Rev Lett, added autho

    Molecular Carbon Chains and Rings in TMC-1

    Get PDF
    We present mapping results in several rotational transitions of HC3N, C6H, both cyclic and linear C3H2 and C3H, towards the cyanopolyyne peak of the filamentary dense cloud TMC-1 using the IRAM 30m and MPIfR 100m telescopes. The spatial distribution of the cumulene carbon chain propadienylidene H2C3 (hereafter l-C3H2) is found to deviate significantly from the distributions of the cyclic isomer c-C3H2, HC3N, and C6H which in turn look very similar. The cyclic over linear abundance ratio of C3H2 increases by a factor of 3 across the filament, with a value of 28 at the cyanopolyyne peak. This abundance ratio is an order of magnitude larger than the range (3 to 5) we observed in the diffuse interstellar medium. The cyclic over linear abundance ratio of C3H also varies by ~2.5 in TMC-1, reaching a maximum value (13) close to the cyanopolyyne peak. These behaviors might be related to competitive processes between ion-neutral and neutral-neutral reactions for cyclic and linear species.Comment: Accepted for publication in The Astrophysical Journal, part I. 24 pages, including 4 tables, 7 figures, and figure caption

    A Molecular Einstein Ring: Imaging a Starburst Disk Surrounding a Quasi-Stellar Object

    Get PDF
    Images of the CO 2-1 line emission, and the radio continuum emission, from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star forming disk surrounding the QSO nucleus with a radius of 2 kpc. The implied massive star formation rate is 900 M_sun/year. At this rate a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 10^8 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.Comment: 12 pages. to appear in Science, April 200
    corecore