16 research outputs found

    Large Interstellar Polarisation Survey, II : UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    Get PDF
    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (>= 6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm

    The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel

    Get PDF
    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims. We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods.Herschel PACS images at 70, 100, and 160 μm and SPIRE images at 250, 350, and 500 μm were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at ~6–7′ from the central target and the presence of a linear bar at ~9′. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15′′), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of ~2′ suggests a drastic change in mean gas and dust density ~32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse. Conclusions. Different hypotheses, based on observational and theoretical constraints, are formulated to explain the origin of the multiple arcs and the linear bar and the fact that no large-scale instabilities are visible in the bow shock region. We infer that the two main ingredients for explaining these phenomena are a non-homogeneous mass-loss process and the influence of the Galactic magnetic field. The hydrodynamical simulations show that a warm interstellar medium, reflecting a warm neutral or partially ionized medium, or a higher temperature in the shocked wind also prevent the growth of strong instabilities. The linear bar is probably an interstellar structure illuminated by Betelgeuse itself

    Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud

    Full text link
    The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial 7Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar 7Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day 7Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.Comment: Published in Nature. Includes main text and Supplementary Information. Replaced with final title and abstrac

    Optical and near-infrared observations of the Fried Egg Nebula

    Get PDF
    Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate and geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to provide insight into the nature (i.e. geometry, rates) of mass-loss episodes, and in particular, the connection between the observed asymmetries due to the mass lost in a fast wind or during a previous, prodigious mass-losing phase. In this context, yellow hypergiants offer a good opportunity to study mass-loss events. Methods. We analysed a large set of optical and near-infrared data in spectroscopic and photometric, spectropolarimetric, and interferometric (GRAVITY/VLTI) modes, towards the yellow hypergiant IRAS 17163−3907. We used X-shooter optical observations to determine the spectral type of this yellow hypergiant and we present the first model-independent, reconstructed images of IRAS 17163−3907 at these wavelengths tracing milli-arcsecond scales. Lastly, we applied a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published diffraction-limited VISIR images at 8.59 μm, 11.85 μm, and 12.81 μm simultaneously, adopting a revised distance determination using Gaia Data Release 2 measurements. Results. We constrain the spectral type of IRAS 17163−3907 to be slightly earlier than A6Ia (Teff ∼ 8500 K). The interferometric observables around the 2 μm window towards IRAS 17163−3907 show that the Brγ emission appears to be more extended and asymmetric than the Na I and the continuum emission. Interestingly, the spectrum of IRAS 17163−3907 around 2 μm shows Mg II emission that is not previously seen in other objects of its class. In addition, Brγ shows variability in a time interval of four months that is not seen towards Na I. Lastly, in addition to the two known shells surrounding IRAS 17163−3907, we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The 2 μm continuum originates directly from the star and not from hot dust surrounding the stellar object. The observed spectroscopic variability of Brγ could be a result of variability in the mass-loss rate. The interpretation of the presence of Na I emission at closer distances to the star compared to Brγ has been a challenge in various studies. To address this, we examine several scenarios. We argue that the presence of a pseudo-photosphere, which was traditionally considered to be the prominent explanation, is not needed and that it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform theories of mass-loss mechanisms, which is a topic still under debate both in theory and observations. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms

    Families and clusters of diffuse interstellar bands: a data-driven correlation analysis

    Get PDF
    More than 500 diffuse interstellar bands (DIBs) have been observed in astronomical spectra, and their signatures and correlations in different environments have been studied over the past decades to reveal clues about the nature of the carriers. We compare the equivalent widths of the DIBs, normalized to the amount of reddening, EB-V, to search for anticorrelated DIB pairs using a data sample containing 54 DIBs measured in 25 sightlines. This data sample covers most of the strong and commonly detected DIBs in the optical region, and the sightlines probe a variety of interstellar medium conditions. We find that 12.9 per cent of the DIB pairs are anticorrelated, and the lowest Pearson correlation coefficient is r(norm) similar to -0.7. We revisit correlation-based DIB families and are able to reproduce the assignments of such families for the well-studied DIBs by applying hierarchical agglomerative and k-means clustering algorithms. We visualize the dissimilarities between DIBs, represented by 1 - r(norm), using multidimensional scaling (MDS). With this representation, we find that the DIBs form a rather continuous sequence, which implies that some properties of the DIB carriers are changing gradually following this sequence. We also find that at that least two factors are needed to properly explain the dissimilarities between DIBs. While the first factor may be interpreted as related to the ionization properties of the DIB carriers, a physical interpretation of the second factor is less clear and may be related to how DIB carriers interact with surrounding interstellar material

    A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk.

    Get PDF
    Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk

    Diffuse interstellar bands in the H II region M17 Insights into their relation with the total-to-selective visual extinction R-v

    No full text
    © ESO 2018. Context. Diffuse interstellar bands (DIBs) are broad absorption features measured in sightlines probing the diffuse interstellar medium. Although large carbon-bearing molecules have been proposed as the carriers producing DIBs, their identity remains unknown. DIBs make an important contribution to the extinction curve; the sightline to the young massive star-forming region M17 shows anomalous extinction in the sense that the total-To-selective extinction parameter (R V ) differs significantly from the average Galactic value and may reach values R V > 4. Anomalous DIBs have been reported in the sightline towards Herschel 36 (R V = 5.5), in the massive star-forming region M8. Higher values of R V have been associated with a relatively higher fraction of large dust grains in the line of sight. Aims. Given the high R V values, we investigate whether the DIBs in sightlines towards young OB stars in M17 show a peculiar behaviour. Methods. We measure the properties of the most prominent DIBs in M17 and study these as a function of E(B-V) and R V . We also analyse the gaseous and dust components contributing to the interstellar extinction. Results. The DIB strengths in M17 concur with the observed relations between DIB equivalent width and reddening E(B-V) in Galactic sightlines. For several DIBs we discover a linear relation between the normalised DIB strength EW/A V and R V-1 . These trends suggest two groups of DIBs: (i) a group of ten moderately strong DIBs that show a sensitivity to changes in R V that is modest and proportional to DIB strength, and (ii) a group of four very strong DIBs that react sensitively and to a similar degree to changes in R V , but in a way that does not appear to depend on DIB strength. Conclusions. DIB behaviour as a function of reddening is not peculiar in sightlines to M17. Also, we do not detect anomalous DIB profiles like those seen in Herschel 36. DIBs are stronger, per unit visual extinction, in sightlines characterised by a lower value of R V , i.e.Those sightlines that contain a relatively large fraction of small dust particles. New relations between extinction normalised DIB strengths, EW/A V , and R V support the idea that DIB carriers and interstellar dust are intimately connected. Furthermore, given the distinct behaviour of two groups of DIBs, different types of carriers do not necessarily relate to the dust grains in a similar way.status: publishe

    PAH charge state distribution and DIB carriers:Implications from the line of sight toward HD 147889

    Get PDF
    We have computed physical parameters such as density, degree of ionization and temperature, constrained by a large observational data set on atomic and molecular species, for the line of sight toward the single cloud HD147889. Diffuse interstellar bands ( DIBs) produced along this line of sight are well documented and can be used to test the PAH hypothesis. To this effect, the charge state fractions of different polycyclic aromatic hydrocarbons (PAHs) are calculated in HD147889 as a function of depth for the derived density, electron abundance and temperature profile. As input for the construction of these charge state distributions, the microscopic properties of the PAHs, e. g., ionization potential and electron affinity, are determined for a series of symmetry groups. The combination of a physical model for the chemical and thermal balance of the gas toward HD147889 with a detailed treatment of the PAH charge state distribution, and laboratory and theoretical data on specific PAHs, allow us to compute electronic spectra of gas phase PAH molecules and to draw conclusions about the required properties of PAHs as DIB carriers. We find the following. 1) The variation of the total charge state distribution of each specific class ( series) of PAH in the translucent cloud toward HD147889 ( and also of course for any other diffuse/ translucent cloud) depends strongly on the molecular symmetry and size ( number of p electrons). This is due to the strong effects of these parameters on the ionization potential of a PAH. 2) Different wavelength regions in the DIB spectrum are populated preferentially by different PAH charge states depending on the underlying PAH size distribution. 3) The PAH size distribution for HD147889 is constrained by the observed DIB spectrum to be Gaussian with a mean of 50 carbon atoms. 4) For the given PAH size distribution it is possible to constrain the total small catacondensed PAH column density along the line of sight to HD147889 to 2.4 x 10(14) cm(-2) by comparing the total observed UV extinction to the strong UV absorptions of neutral PAHs in the 2000-3000 Angstrom region. 5) Catacondensed PAHs with sizes above some 40 C-atoms are expected to show strong DIBS longward of 10 000 Angstrom. Large condensed PAHs in the series, pyrene, coronene, ovalene,...., on the other hand, mainly absorb between 4000 and 10 000 Angstrom but extrapolation to even larger pericondensed PAHs in this series also shows strong absorptions longward of 10 000 Angstrom. 6) Only the weak DIBs in HD147889 could be reproduced by a mix of small catacondensed PAHs (<50 C atoms) while for large pericondensed PAHs ( 50 <C atoms <100) the intermediate DIBs are well reproduced. Small catacondensed PAHs cannot contribute more than 50% of the total observed equivalent width toward HD147889. Strong DIBs can only be reproduced by addition of very specific PAH molecules or homologue series to the sample set (i.e., a small number of PAHs with high oscillator strength or a large number of PAHs with a low oscillator strength). An outline is provided for a more general application of this method to other lines of sight, which can be used as a pipeline to compute the spectroscopic response of a PAH or group of PAHs in a physical environment constrained by independent (non-DIB) observations

    Dusty wind of W Hydrae Multi-wavelength modelling of the present-day and recent mass loss

    No full text
    Context. Low- and intermediate-mass stars go through a period of intense mass-loss at the end of their lives, during the asymptotic giant branch (AGB) phase. While on the AGB a significant part, or even most, of their initial mass is expelled in a stellar wind. This process controls the final stages of the evolution of these stars and contributes to the chemical evolution of galaxies. However, the wind-driving mechanism of AGB stars is not yet well understood, especially so for oxygen-rich sources. Characterizing both the present-day mass-loss rate and wind structure and the evolution of the mass-loss rate of such stars is paramount to advancing our understanding of this processes. Aims: We study the dusty wind of the oxygen-rich AGB star W Hya to understand its composition and structure and shed light on the mass-loss mechanism. Methods: We modelled the dust envelope of W Hya using an advanced radiative transfer code. We analysed our dust model in the light of a previously calculated gas-phase wind model and compared it with measurements available in the literature, such as infrared spectra, infrared images, and optical scattered light fractions. Results: We find that the dust spectrum of W Hya can partly be explained by a gravitationally bound dust shell that probably is responsible for most of the amorphous Al2O3 emission. The composition of the large (~0.3 μm) grains needed to explain the scattered light cannot be constrained, but probably is dominated by silicates. Silicate emission in the thermal infrared was found to originate from beyond 40 AU from the star. In our model, the silicates need to have substantial near-infrared opacities to be visible at such large distances. The increase in near-infrared opacity of the dust at these distances roughly coincides with a sudden increase in expansion velocity as deduced from the gas-phase CO lines. The dust envelope of W Hya probably contains an important amount of calcium but we were not able to obtain a dust model that reproduces the observed emission while respecting the limit set by the gas mass-loss rate. Finally, the recent mass loss of W Hya is confirmed to be highly variable and we identify a strong peak in the mass-loss rate that occurred about 3500 years ago and lasted for a few hundred years.15 pages, 13 figuresstatus: publishe
    corecore