4,483 research outputs found

    Two and Three Dimensional Incommensurate Modulation in Optimally-Doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefold increase in the unit cell dimension along the {\bf b}-direction. The strongest scattering comes from the well known (H, K±\pm 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, ξc\xi_c∼\sim20 A˚\AA in the {\bf c} direction, and of ξb\xi_b∼\sim 185 A˚\AA parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K±\pm 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using STM topography.Comment: 8 pages, 8 figure

    AGN in the XMM-Newton first-light image as probes for the interstellar medium in the LMC

    Get PDF
    The XMM-Newton first-light image revealed X-ray point sources which show heavily absorbed power-law spectra. The spectral indices and the probable identification of a radio counterpart for the brightest source suggest AGN shining through the interstellar gas of the Large Magellanic Cloud (LMC). The column densities derived from the X-ray spectra in combination with HI measurements will allow to draw conclusions on HI to H_2 ratios in the LMC and compare these with values found for the galactic plane.Comment: 4 pages, LaTex, 4 figures, Accepted for publication in A&A Letter

    FUSE Spectra of the Black Hole Binary LMC X-3

    Full text link
    Far-ultraviolet spectra of LMC X-3 were taken covering photometric phases 0.47 to 0.74 in the 1.7-day orbital period of the black-hole binary (phase zero being superior conjunction of the X-ray source). The continuum is faint and flat, but appears to vary significantly during the observations. Concurrent RXTE/ASM observations show the system was in its most luminous X-ray state during the FUSE observations. The FUV spectrum contains strong terrestrial airglow emission lines, while the only stellar lines clearly present are emissions from the O VI resonance doublet. Their flux does not change significantly during the FUSE observations. These lines are modelled as two asymmetrical profiles, including the local ISM absorptions due to C II and possibly O VI. Velocity variations of O VI emission are consistent with the orbital velocity of the black hole and provide a new constraint on its mass.Comment: 12 pages including 1 table, 4 diagrams To appear in A

    Magnetic Phase Diagrams of Erbium

    Get PDF
    The magnetic phase diagrams of erbium in the magnetic field–temperature plane have been constructed for applied magnetic fields along the a and b axes. For an a-axis applied field our H–T phase diagrams determined from magnetization and magnetoresistance data are in good agreement and consistent with that of Jehan et al. for temperatures below 50 K. A splitting of the basal plane Néel temperature (TN⊥) above 3.75 T introduces two new magnetic phases. Also a transition from a fan to a canted fan phase as suggested by Jehan et al. is observed in an increasing field below TC. Our phase diagram for a b-axis applied field constructed from magnetization data is very similar to the phase diagram of Watson and Ali using magnetoresistance measurements. However, the anomaly at 42 K reported by Watson and Ali is not observed in the present study. No splitting of the TN⊥ transition is observed in either work for a field applied along the b axis

    Generalised Player Modelling : Why Artificial Intelligence in Games Should Incorporate Meaning, with a Formalism for so Doing

    Get PDF
    General game-playing artificial intelligence (AI) has recently seen important advances due to the various techniques known as ‘deep learning’. However, in terms of human-computer interaction, the advances conceal a major limitation: these algorithms do not incorporate any sense of what human players find meaningful in games. I argue that adaptive game AI will be enhanced by a generalised player model, because games are inherently human artefacts which require some encoding of the human perspective in order to respond naturally to individual players. The player model provides constraints on the adaptive AI, which allow it to encode aspects of what human players find meaningful. I propose that a general player model requires parameters for the subjective experience of play, including: player psychology, game structure, and actions of play. I argue that such a player model would enhance efficiency of per-game solutions, and also support study of game-playing by allowing (within-player) comparison between games, or (within-game) comparison between players (human and AI). Here we detail requirements for functional adaptive AI, arguing from first-principles drawn from games research literature, and propose a formal specification for a generalised player model based on our ‘Behavlets’ method for psychologically-derived player modelling.Peer reviewe

    Relevance of pseudospin symmetry in proton-nucleus scattering

    Full text link
    The manifestation of pseudospin-symmetry in proton-nucleus scattering is discussed. Constraints on the pseudospin-symmetry violating scattering amplitude are given which require as input cross section and polarization data, but no measurements of the spin rotation function. Application of these constraints to p-58Ni and p-208Pb scattering data in the laboratory energy range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at lower energies and a weak one at higher energies. Using a schematic model within the Dirac phenomenology, the role of the Coulomb potential in proton-nucleus scattering with regard to pseudospin symmetry is studied. Our results indicate that the existence of pseudospin-symmetry in proton-nucleus scattering is questionable in the whole energy region considered and that the violation of this symmetry stems from the long range nature of the Coulomb interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of Fig. 8 and Fig.

    Oxygen superstructures throughout the phase diagram of (Y,Ca)Ba2Cu3O6+x\bf (Y,Ca)Ba_2 Cu_3 O_{6+x}

    Full text link
    Short-range lattice superstructures have been studied with high-energy x-ray diffuse scattering in underdoped, optimally doped, and overdoped (Y,Ca)Ba2Cu3O6+x\rm (Y,Ca)Ba_2 Cu_3 O_{6+x}. A new four-unit-cell superstructure was observed in compounds with x∼0.95x\sim 0.95. Its temperature, doping, and material dependence was used to attribute its origin to short-range oxygen vacancy ordering, rather than electronic instabilities in the CuO2\rm CuO_2 layers. No significant diffuse scattering is observed in YBa2_2Cu4_4O8_{8}. The oxygen superstructures must be taken into account when interpreting spectral anomalies in (Y,Ca)Ba2Cu3O6+x\rm (Y,Ca)Ba_2 Cu_3 O_{6+x}

    Isotopic Production Cross Sections in Proton-Nucleus Collisions at 200 MeV

    Get PDF
    Intermediate mass fragments (IMF) from the interaction of 27^{27}Al, 59^{59}Co and 197^{197}Au with 200 MeV protons were measured in an angular range from 20 degree to 120 degree in the laboratory system. The fragments, ranging from isotopes of helium up to isotopes of carbon, were isotopically resolved. Double differential cross sections, energy differential cross sections and total cross sections were extracted.Comment: accepted by Phys. Rev.
    • …
    corecore