189 research outputs found

    Mevastatin-induced inhibition of cell growth in avocado suspension cultures and reversal by isoprenoid compounds

    Get PDF
    Cell suspension cultures were established using soft, friable callus derived from nucellar tissue of ‘Hass' avocado (Persea americana Mill.) seed from fruit harvested 190 days after full bloom. Cell cultures were maintained in liquid medium supplemented with naphthalene acetic acid (NAA), isopentenyl adenine (iP) and sucrose and sub-cultured at 14 day intervals. Growth was typically sigmoidal with a lag phase of 7 days followed by an exponential phase of approximately 14 days. Mevastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) was used to probe the contribution of metabolites of the isoprenoid pathway for avocado cell growth. Treatment with mevastatin inhibited cell growth and caused loss of cell viability. Inhibition of cell growth was transient and at all concentrations of mevastatin tested, recovery was evident within 17 days. The arrest of cell growth by 1 and 40 μmol/L mevastatin was negated when this inhibitor of HMGR was supplied in the presence of either mevalonolactone (MVL) or farnesyl diphosphate (FDP). By comparison, co-treatment of cells supplied 1 μmol/L mevastatin with stigmasterol showed little or no response whereas at 40 μmol/L mevastatin, stigmasterol induced partial recovery of cell growth. The results indicate a requirement for mevalonic acid (MVA) and cytosolic isoprenoid biosynthesis, in particular FDP, for avocado cell growth and support the hypothesis that appearance of the small-fruit phenotype in ‘Hass' is inextricably linked to activity of HMGR. Key words: Avocado, cell suspensions, farnesyl diphosphate, HMGR, mevalonic acid, Persea americana. African Journal of Biotechnology Vol.2(9) 2003: 264-27

    Symplastic solute transport and avocado fruit development : a decline in cytokinin/ABA ratio is related to appearance of the Hass small fruit variant

    Get PDF
    Studies on the effect of fruit size on endogenous ABA and isopentenyladenine (iP) in developing avocado (Persea americana Mill. cv. Hass) fruit revealed that ABA content was negatively correlated with fruit size whilst the iP/ABA ratio showed a linear relationship with increasing size of fruit harvested 226 d after full bloom. The effect of this change in hormone balance on the relationship between symplastic solute transport and appearance of the small fruit variant was examined following manipulation of the endogenous cytokinin (CK)/ABA ratio. Application of ABA caused seed coat senescence and retarded fruit growth but these effects were absent in fruit treated with equal amounts of ABA plus iP. Thus, the underlying physiological mechanisms associated with ABA-induced retardation of Hass avocado fruit growth appeared to be inextricably linked to a decline in CK content and included: diminution of mesocarp and seed coat plasmodesmatal branching, gating of mesocarp and seed coat plasmodesmata by deposition of electron dense material in the neck region, abolishment of the electrochemical gradient between mesocarp and seed coat parenchyma, and arrest of cell-to-cell chemical communication

    Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery

    Get PDF
    Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound healing responses to a conventional surgical laser, and standard mechanical instruments shows far less damage and near absence of scar formation by using PIRL laser. This new laser source appears to have achieved the long held promise of lasers in minimally invasive surgery

    A computational study on altered theta-gamma coupling during learning and phase coding

    Get PDF
    There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×107<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×108<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 101010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 104610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Constraints on Neutralino Dark Matter from LEP 2 and Cosmology

    Get PDF
    A significant lower limit on the mass of the lightest neutralino \chi can be obtained by combining the results from sparticle searches at LEP at centre-of-mass energies up to 172 GeV with cosmological considerations, if it is assumed that the \chi is stable. Exclusion domains from slepton searches close m_\chi \sim 0 loopholes that were left open by previous lower-energy LEP searches for charginos and neutralinos, leading to the lower limit m_\chi \ga 17 GeV. The constraints on supersymmetric parameter space are strengthened significantly if LEP constraints on supersymmetric Higgs bosons are taken into account, and further if the relic neutralino density is required to fall within the range favoured by astrophysics and cosmology. These bounds are considerably strengthened if universality at the GUT scale is assumed for soft supersymmetry-breaking scalar masses, including those of the Higgs bosons. In this case, the Higgs searches play a dramatic role, and we find that m_\chi \ga 40 GeV. Furthermore, we find that if tan\beta \la 1.7 for \mu<0, or tan\beta \la 1.4 for \mu >0, the cosmological relic density is too large for all values of m_\chi.Comment: Latex, 17 pages incling 3 eps figure

    Exploring South Africa’s southern frontier: A 20-year vision for polar research through the South African National Antarctic Programme

    Get PDF
    Antarctica, the sub-Antarctic islands and surrounding Southern Ocean are regarded as one of the planet’s last remaining wildernesses, ‘insulated from threat by [their] remoteness and protection under the Antarctic Treaty System’1 . Antarctica encompasses some of the coldest, windiest and driest habitats on earth. Within the Southern Ocean, sub-Antarctic islands are found between the Sub-Antarctic Front to the north and the Polar Front to the south. Lying in a transition zone between warmer subtropical and cooler Antarctic waters, these islands are important sentinels from which to study climate change.2 A growing body of evidence3,4 now suggests that climatically driven changes in the latitudinal boundaries of these two fronts define the islands’ short- and long-term atmospheric and oceanic circulation patterns. Consequently, sub-Antarctic islands and their associated terrestrial and marine ecosystems offer ideal natural laboratories for studying ecosystem response to change.5 For example, a recent study6 indicates that the shift in the geographical position of the oceanic fronts has disrupted inshore marine ecosystems, with a possible impact on top predators. Importantly, biotic responses are variable as indicated by different population trends of these top predators.7,8 When studied collectively, these variations in species’ demographic patterns point to complex spatial and temporal changes within the broader sub-Antarctic ecosystem, and invite further examination of the interplay between extrinsic and intrinsic drivers

    Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

    Get PDF
    Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
    corecore