28 research outputs found

    Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.

    Get PDF
    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.].S.C. was supported by a grant to IRRI from the Bill and Melinda Gates Foundation and UKAID. This work was supported by a National Science Foundation award (grant numbers DEB 1354048 and DEB 1352907) to S.F.B., M.J.M. and S.A.S., and a NERC Independent Research Fellowship to S.F.B. The 1000 Plants (1KP) initiative, led by G.K.S.W., is funded by the Alberta Ministry of Enterprise and Advanced Education, Alberta Innovates Technology Futures (AITF), Innovates Centre of Research Excellence (iCORE), Musea Ventures and BGI-Shenzhen.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/nph.1344

    Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism

    Get PDF
    CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes

    Distinct C4 sub-types and C3 bundle sheath isolation in the Paniceae grasses.

    Get PDF
    Funder: U.S. Department of Agriculture; Id: http://dx.doi.org/10.13039/100000199Funder: University of Missouri; Id: http://dx.doi.org/10.13039/100007165In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life

    Independent and parallel evolution of new genes by gene duplication in two origins of C4 photosynthesis provides new insight into the mechanism of phloem loading in C4 species.

    No full text
    C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genomewide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species

    Agribiotechnology: Blue-sky rice

    No full text

    C4 Photosynthesis in the Rice Paddy: Insights from the Noxious Weed Echinochloa glabrescens

    No full text
    The C4 pathway is a highly complex trait that increases photosynthetic efficiency in more than 60 plant lineages. Although the majority of C4 plants occupy disturbed, arid, and nutrient-poor habitats, some grow in high-nutrient, waterlogged conditions. One such example is Echinochloa glabrescens, which is an aggressive weed of rice paddies. We generated comprehensive transcriptome datasets for C4 E. glabrescens and C3 rice to identify genes associated with adaption to waterlogged, nutrient-replete conditions, but also used the data to better understand how C4 photosynthesis operates in these conditions. Leaves of E. glabrescens exhibited classical Kranz anatomy with lightly lobed mesophyll cells having low chloroplast coverage. As with rice and other hygrophytic C3 species, leaves of E. glabrescens accumulated a chloroplastic phosphoenolpyruvate carboxylase protein, albeit at reduced amounts relative to rice. The arid-grown species Setaria italica (C4) and Brachypodium distachyon (C3) were also found to accumulate chloroplastic phosphoenolpyruvate carboxylase. We identified a molecular signature associated with C4 photosynthesis in nutrient-replete, waterlogged conditions that is highly similar to those previously reported from C4 plants that grow in more arid conditions. We also identified a cohort of genes that have been subjected to a selective sweep associated with growth in paddy conditions. Overall, this approach highlights the value of using wild species such as weeds to identify adaptions to specific conditions associated with high-yielding crops in agriculture

    C4 Photosynthesis in the Rice Paddy: Insights from the Noxious Weed Echinochloa glabrescens

    No full text
    The C4 pathway is a highly complex trait that increases photosynthetic efficiency in more than 60 plant lineages. Although the majority of C4 plants occupy disturbed, arid, and nutrient-poor habitats, some grow in high-nutrient, waterlogged conditions. One such example is Echinochloa glabrescens, which is an aggressive weed of rice paddies. We generated comprehensive transcriptome datasets for C4 E. glabrescens and C3 rice to identify genes associated with adaption to waterlogged, nutrient-replete conditions, but also used the data to better understand how C4 photosynthesis operates in these conditions. Leaves of E. glabrescens exhibited classical Kranz anatomy with lightly lobed mesophyll cells having low chloroplast coverage. As with rice and other hygrophytic C3 species, leaves of E. glabrescens accumulated a chloroplastic phosphoenolpyruvate carboxylase protein, albeit at reduced amounts relative to rice. The arid-grown species Setaria italica (C4) and Brachypodium distachyon (C3) were also found to accumulate chloroplastic phosphoenolpyruvate carboxylase. We identified a molecular signature associated with C4 photosynthesis in nutrient-replete, waterlogged conditions that is highly similar to those previously reported from C4 plants that grow in more arid conditions. We also identified a cohort of genes that have been subjected to a selective sweep associated with growth in paddy conditions. Overall, this approach highlights the value of using wild species such as weeds to identify adaptions to specific conditions associated with high-yielding crops in agriculture
    corecore