54 research outputs found

    Toll-Like Receptor Agonists Synergize with CD40L to Induce Either Proliferation or Plasma Cell Differentiation of Mouse B Cells

    Get PDF
    In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response

    PEDIA: prioritization of exome data by image analysis

    Get PDF
    Purpose Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. Methods Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. Results The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20–89% and the top 10 accuracy rate by more than 5–99% for the disease-causing gene. Conclusion Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    IFN-Lambda (IFN-λ) Is Expressed in a Tissue-Dependent Fashion and Primarily Acts on Epithelial Cells In Vivo

    Get PDF
    Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-α/β (type I IFN) and IFN-λ (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-α/β and IFN-λ systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-λ. In the brain, IFN-α/β was readily produced after infection with various RNA viruses, whereas expression of IFN-λ was low in this organ. In the liver, virus infection induced the expression of both IFN-α/β and IFN-λ genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-α/β and IFN-λ to be compared. The response to IFN-λ correlated with expression of the α subunit of the IFN-λ receptor (IL-28Rα). The IFN-λ response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-λ in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-α/β was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-λ system probably evolved to specifically protect epithelia. IFN-λ might contribute to the prevention of viral invasion through skin and mucosal surfaces

    Effect of sulfur mustard on murine lymphocytes.

    No full text
    The effect on spleen cells of a single in vivo treatment with sulfur mustard was analyzed in mice 1 week after intoxication. A marked decrease in the number of total spleen cells was observed in mice receiving high doses of sulfur mustard. Flow cytometric analysis indicated that B-lymphocytes were relatively more affected than T-lymphocytes by this toxic compound. However, the function of remaining B-cells, measured by thymidine incorporation and immunoglobulin secretion in the presence of lipopolysaccharide, was not significantly impaired. In addition, sulfur mustard did not depress T-lymphocyte function since their proliferation in response to concanavalin A or to an anti-CD3 antibody was not affected by the treatment. These results suggest that whereas some observations reported in patients can be found in a murine model, additional in vitro studies with human lymphocytes could more adequately provide further information on sulfur-mustard-induced alterations of the immune system

    L’occupation du sol à Saint-Emilion et sa juridiction, Rapport de Prospection 2012

    No full text
    in : Boutoulle, F. dir. (2013) : Saint-Emilion et sa juridiction. Genèse, architectures et formes d’un territoir
    corecore