19 research outputs found

    Development of the normalization method for the Jagiellonian PET scanner

    Get PDF
    This work aims at applying the theory of the component-based normalization to the Jagiellonian PET scanner, currently under development at the Jagiellonian University. In any positron emission tomography acquisition, efficiency along a line-of-response can vary due to several physical and geometrical effects, leading to severe artifacts in the reconstructed image. To mitigate these effects, a normalization coefficient is applied to each line-of-response, defined as the product of several components. The specificity of the Jagiellonian PET scanner geometry is taken into account. The results obtained from the GATE simulations are compared with the preliminary results obtained from the experimental data

    Development of the normalization method for the Jagiellonian PET scanner

    Get PDF
    This work aims at applying the theory of the component-based normalization for the Jagiellonian PET scanner, currently under development at the Jagiellonian University. In any Positron Emission Tomography acquisition, efficiency along a line-of-response can vary due to several physical and geometrical effects, leading to severe artifacts in the reconstructed image. To mitigate these effects, a normalization coefficient is applied to each line-of-response, defined as the product of several components. Specificity of the Jagiellonian PET scanner geometry is taken into account. Results obtained from GATE simulations are compared with preliminary results obtained from experimental data.Comment: 8 pages, 6 figures, submitted to Acta Physica Polonica

    ProTheRaMon : a GATE simulation framework for proton therapy range monitoring using PET imaging

    Get PDF
    Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user’s needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022)

    Transformation of PET raw data into images for event classification using convolutional neural networks

    Get PDF
    In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into -dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom

    Tomographie de rĂ©gion d'intĂ©rĂȘt par inversion numĂ©rique de la transformĂ©e de Hilbert tronquĂ©e

    No full text
    X-ray imaging methods are based on the measurement of line integrals through an object. The set of line integrals measured for a given source position is called “projection”. The tomographic reconstruction problem is an inverse problem consisting in reconstructing the object from the set of its projections, and the classical theory of tomography has established procedures to perform analytical reconstructions from complete projections. However, some projections are sometimes not entirely measured, for instance when the scanner field-of-view does not completely encompass the object. A recent theoretical result shows that performing a “differentiated backprojection”, that is a backprojection of the derivative of the projections, allows to obtain the exact Hilbert transform of the object within the scanner field-of-view. The data thus obtained are not affected by the truncation of the projections. The tomographic reconstruction problem is then expressed as a set of truncated Hilbert transform inversions to be calculated along one-dimensional segments within the field-of-view. The position of each one-dimensional segment, relatively to the field-of-view and the object boundaries, determines how the truncated Hilbert transform can be inverted. Specifically, if both endpoints of the segment lie outside the object, an analytical inversion formula exists; if only one endpoint lies outside the object, an inverse exists, but no inversion formula is known to this day. This thesis studies the reconstruction of “one-endpoint segments”, that is segments that have only one endpoint outside the object. The first contribution introduces an inversion method based on the singular value decomposition of the truncated discrete Hilbert transform. This decomposition reveals a strong instability caused by singular values close to zero, which is partially corrected by replacing these singular values by an estimation. The singular value decomposition also allows to understand the origin of an artifact observed during the reconstruction of one-endpoint segments. The second contribution proposes a procedure that combines the previous method and the analytic inverse which is computed along two-endpoint segments. This procedure includes a simple operation to realign the two reconstructions, thus avoiding a discontinuity in the final reconstruction. The third contribution deals with the definition of criteria to establish which Hilbert direction to choose for the reconstruction of a given pixel. Two empirical criteria are proposed, one minimizing the length of the region of the segment outside the field-of-view, the other minimizing the artifact characteristic of one-endpoint segments. All the reconstruction methods introduced in this thesis allow the reconstruction of the entire object in the field-of-view as long as the problem is not interior. The benefits of each of these contributions were mainly evaluated on numerical simulations before application to patient data.La tomodensitomĂ©trie est une mĂ©thode d’imagerie par rayons X basĂ©e sur la mesure d’intĂ©grales de lignes Ă  travers un objet. L’ensemble des intĂ©grales mesurĂ©es pour une position donnĂ©e de la source est nommĂ© « projection ». Le problĂšme de reconstruction tomographique est un problĂšme inverse consistant Ă  reconstruire l’objet Ă  partir de l’ensemble de ses projections, et la thĂ©orie classique de la tomographie a permis d’établir des procĂ©dures de reconstruction analytique Ă  partir de projections complĂštes. Cependant, certaines projections ne sont parfois pas mesurĂ©es dans leur intĂ©gralitĂ©, par exemple lorsque le champ de vue du scanner n’englobe pas intĂ©gralement l’objet. Un rĂ©sultat thĂ©orique rĂ©cent montre que rĂ©aliser une « rĂ©troprojection diffĂ©renciĂ©e », c’est-Ă -dire rĂ©troprojeter la dĂ©rivĂ©e des projections, permet d’obtenir la transformĂ©e de Hilbert exacte de l’objet au sein du champ de vue du scanner. Le problĂšme de reconstruction tomographique s’exprime alors sous la forme d’inversions de transformĂ©es de Hilbert tronquĂ©es Ă  calculer le long de segments unidimensionnels au sein du champ de vue. La position de chaque segment unidimensionnel par rapport au champ de vue et Ă  l’objet dĂ©termine comment la transformĂ©e de Hilbert tronquĂ©e peut ĂȘtre inversĂ©e. Plus prĂ©cisĂ©ment, si les deux extrĂ©mitĂ©s du segment se situent hors de l’objet, une formule d’inversion analytique existe ; si une seule extrĂ©mitĂ© se situe hors de l’objet, un inverse existe, mais aucune formule d’inversion n’est connue Ă  ce jour. Cette thĂšse Ă©tudie la reconstruction de segments n’ayant qu’une seule extrĂ©mitĂ© hors de l’objet. La premiĂšre contribution introduit une mĂ©thode d’inversion basĂ©e sur la dĂ©composition en valeurs singuliĂšres de la transformĂ©e de Hilbert discrĂšte et tronquĂ©e. Cette dĂ©composition rĂ©vĂšle une forte instabilitĂ© causĂ©e par certaines valeurs singuliĂšres proches de zĂ©ro, qui est partiellement corrigĂ©e en remplaçant ces valeurs singuliĂšres par des estimations. La dĂ©composition en valeurs singuliĂšres permet Ă©galement de comprendre l’origine d’un artĂ©fact caractĂ©ristique observĂ© lors de la reconstruction de segments n’ayant qu’une extrĂ©mitĂ© hors de l’objet. La deuxiĂšme contribution propose une procĂ©dure combinant la mĂ©thode prĂ©cĂ©dente et l’inverse analytique calculable le long des segments oĂč les deux extrĂ©mitĂ©s sont en dehors de l’objet. Cette procĂ©dure inclut une opĂ©ration simple permettant le rĂ©alignement des deux reconstructions. La troisiĂšme contribution porte sur la dĂ©finition de critĂšres cherchant Ă  Ă©tablir quelle direction de Hilbert choisir pour la reconstruction d’un pixel donnĂ©, et deux critĂšres empiriques sont proposĂ©s. Toutes les mĂ©thodes de reconstruction introduites ici permettent de reconstruire l’intĂ©gralitĂ© de l’objet dans le champ de vue tant que le problĂšme n’est pas intĂ©rieur. L’apport de chacune de ces contributions a Ă©tĂ© essentiellement Ă©valuĂ© sur simulations numĂ©riques avant application Ă  des donnĂ©es patient

    Region-of-interest tomographic reconstruction by numerical inversion of the truncated Hilbert transform

    No full text
    La tomodensitomĂ©trie est une mĂ©thode d’imagerie par rayons X basĂ©e sur la mesure d’intĂ©grales de lignes Ă  travers un objet. L’ensemble des intĂ©grales mesurĂ©es pour une position donnĂ©e de la source est nommĂ© « projection ». Le problĂšme de reconstruction tomographique est un problĂšme inverse consistant Ă  reconstruire l’objet Ă  partir de l’ensemble de ses projections, et la thĂ©orie classique de la tomographie a permis d’établir des procĂ©dures de reconstruction analytique Ă  partir de projections complĂštes. Cependant, certaines projections ne sont parfois pas mesurĂ©es dans leur intĂ©gralitĂ©, par exemple lorsque le champ de vue du scanner n’englobe pas intĂ©gralement l’objet. Un rĂ©sultat thĂ©orique rĂ©cent montre que rĂ©aliser une « rĂ©troprojection diffĂ©renciĂ©e », c’est-Ă -dire rĂ©troprojeter la dĂ©rivĂ©e des projections, permet d’obtenir la transformĂ©e de Hilbert exacte de l’objet au sein du champ de vue du scanner. Le problĂšme de reconstruction tomographique s’exprime alors sous la forme d’inversions de transformĂ©es de Hilbert tronquĂ©es Ă  calculer le long de segments unidimensionnels au sein du champ de vue. La position de chaque segment unidimensionnel par rapport au champ de vue et Ă  l’objet dĂ©termine comment la transformĂ©e de Hilbert tronquĂ©e peut ĂȘtre inversĂ©e. Plus prĂ©cisĂ©ment, si les deux extrĂ©mitĂ©s du segment se situent hors de l’objet, une formule d’inversion analytique existe ; si une seule extrĂ©mitĂ© se situe hors de l’objet, un inverse existe, mais aucune formule d’inversion n’est connue Ă  ce jour. Cette thĂšse Ă©tudie la reconstruction de segments n’ayant qu’une seule extrĂ©mitĂ© hors de l’objet. La premiĂšre contribution introduit une mĂ©thode d’inversion basĂ©e sur la dĂ©composition en valeurs singuliĂšres de la transformĂ©e de Hilbert discrĂšte et tronquĂ©e. Cette dĂ©composition rĂ©vĂšle une forte instabilitĂ© causĂ©e par certaines valeurs singuliĂšres proches de zĂ©ro, qui est partiellement corrigĂ©e en remplaçant ces valeurs singuliĂšres par des estimations. La dĂ©composition en valeurs singuliĂšres permet Ă©galement de comprendre l’origine d’un artĂ©fact caractĂ©ristique observĂ© lors de la reconstruction de segments n’ayant qu’une extrĂ©mitĂ© hors de l’objet. La deuxiĂšme contribution propose une procĂ©dure combinant la mĂ©thode prĂ©cĂ©dente et l’inverse analytique calculable le long des segments oĂč les deux extrĂ©mitĂ©s sont en dehors de l’objet. Cette procĂ©dure inclut une opĂ©ration simple permettant le rĂ©alignement des deux reconstructions. La troisiĂšme contribution porte sur la dĂ©finition de critĂšres cherchant Ă  Ă©tablir quelle direction de Hilbert choisir pour la reconstruction d’un pixel donnĂ©, et deux critĂšres empiriques sont proposĂ©s. Toutes les mĂ©thodes de reconstruction introduites ici permettent de reconstruire l’intĂ©gralitĂ© de l’objet dans le champ de vue tant que le problĂšme n’est pas intĂ©rieur. L’apport de chacune de ces contributions a Ă©tĂ© essentiellement Ă©valuĂ© sur simulations numĂ©riques avant application Ă  des donnĂ©es patient.X-ray imaging methods are based on the measurement of line integrals through an object. The set of line integrals measured for a given source position is called “projection”. The tomographic reconstruction problem is an inverse problem consisting in reconstructing the object from the set of its projections, and the classical theory of tomography has established procedures to perform analytical reconstructions from complete projections. However, some projections are sometimes not entirely measured, for instance when the scanner field-of-view does not completely encompass the object. A recent theoretical result shows that performing a “differentiated backprojection”, that is a backprojection of the derivative of the projections, allows to obtain the exact Hilbert transform of the object within the scanner field-of-view. The data thus obtained are not affected by the truncation of the projections. The tomographic reconstruction problem is then expressed as a set of truncated Hilbert transform inversions to be calculated along one-dimensional segments within the field-of-view. The position of each one-dimensional segment, relatively to the field-of-view and the object boundaries, determines how the truncated Hilbert transform can be inverted. Specifically, if both endpoints of the segment lie outside the object, an analytical inversion formula exists; if only one endpoint lies outside the object, an inverse exists, but no inversion formula is known to this day. This thesis studies the reconstruction of “one-endpoint segments”, that is segments that have only one endpoint outside the object. The first contribution introduces an inversion method based on the singular value decomposition of the truncated discrete Hilbert transform. This decomposition reveals a strong instability caused by singular values close to zero, which is partially corrected by replacing these singular values by an estimation. The singular value decomposition also allows to understand the origin of an artifact observed during the reconstruction of one-endpoint segments. The second contribution proposes a procedure that combines the previous method and the analytic inverse which is computed along two-endpoint segments. This procedure includes a simple operation to realign the two reconstructions, thus avoiding a discontinuity in the final reconstruction. The third contribution deals with the definition of criteria to establish which Hilbert direction to choose for the reconstruction of a given pixel. Two empirical criteria are proposed, one minimizing the length of the region of the segment outside the field-of-view, the other minimizing the artifact characteristic of one-endpoint segments. All the reconstruction methods introduced in this thesis allow the reconstruction of the entire object in the field-of-view as long as the problem is not interior. The benefits of each of these contributions were mainly evaluated on numerical simulations before application to patient data

    Mönsterutvinning i obestÀmda tensorer

    No full text
    Data mining is the art of extracting information from data and creating useful knowledge. Itemset mining, or pattern mining, is an important subfield that consists in finding relevant patterns in datasets. We focus on two subproblems: high-utility itemset mining, where a numerical value called utility is associated to every tuple of the dataset, and patterns are extracted whose utilities sum up to a high-enough value; and skypattern mining, which is the extraction of patterns optimizing various measures, using the notion of Pareto domination. To tackle both of these challenges, we follow a generalistic approach based on measures’ piecewise (anti-)monotonicity. This mathematical property is used in multidupehack, an algorithm in which it is proved useful to prune the search space. Our contributions are implemented as extensions of multidupehack in order to benefit from its powerful pruning strategy. It also allows the extraction of patterns in a broad context: many existing algorithms only handle datasets that are 0/1-matrices, while this work deals with uncertain tensors, i.e. n-dimensional datasets in which the values are numerical numbers between 0 and 1. Experiments on real-life datasets show the efficiency of our approach, and its ability to extract semantically highly relevant patterns. Comparative studies on reference datasets prove its competitiveness with state-of-the-art algorithms: despite its greater versatility, it is often shown faster than its competitors.Datautvinning Ă€r konsten att skapa anvĂ€ndbar kunskap genom att utvinna information ur data. Itemset-utvinning, eller mönsteranalys, Ă€r ett viktigt delomrĂ„de inom datautvinning som bestĂ„r av att hitta mönster i dataset. Denna studie fokuserar pĂ„ tvĂ„ sub-problem: high utility itemset-utvinning, mönsteranalys dĂ€r ett numerisk vĂ€rde befĂ€sts pĂ„ nyttan (utility) hos varje tupel i datasetet för att sedan utvinna endast den data med hög nytta; och skypattern mining, som Ă€r en utvinning av mönster dĂ€r man optimerar olika vĂ€rden, med hjĂ€lp av Pareto-dominans. För att tackla dessa problem anvĂ€nder vi ett generalistiskt angreppssĂ€tt som baseras pĂ„ mĂ€tvĂ€rdens delvisa (anti-)monotonicitet. Denna matematiska egenskap anvĂ€nds i multidupehack, en algoritm dĂ€r egenskapen visar sig nyttig för att beskĂ€ra sökrymder. VĂ„rt bidrag innefattar en fördjupad implementation av multidupehack för att dra nytta av dess kraftfulla beskĂ€rningsstrategi. Bidraget tillĂ„ter Ă€ven utvinning av mönster i en större kontext: mĂ„nga samtida algoritmer kan bara hantera dataset bestĂ„ende av 0/1-matriser, medan detta bidrag tacklar obestĂ€mda tensorer, n-dimensionella dataset i vilka vĂ€rdena Ă€r numeriska tal mellan 0 och 1. Experiment pĂ„ dataset ur vardagen visar effektiviteten av vĂ„rt angreppssĂ€tt och dess förmĂ„ga att utvinna mycket semantiskt relevanta mönster. Liknande studier pĂ„ referensdataset visar dess prestationsförmĂ„ga gentemot state-of-the-art algoritmer: trots algoritmens allsidighet, visar den prov pĂ„ att vara bĂ€ttre Ă€n sina konkurrenter

    Tomographie de rĂ©gion d'intĂ©rĂȘt par inversion numĂ©rique de la transformĂ©e de Hilbert tronquĂ©e

    No full text
    X-ray imaging methods are based on the measurement of line integrals through an object. The set of line integrals measured for a given source position is called “projection”. The tomographic reconstruction problem is an inverse problem consisting in reconstructing the object from the set of its projections, and the classical theory of tomography has established procedures to perform analytical reconstructions from complete projections. However, some projections are sometimes not entirely measured, for instance when the scanner field-of-view does not completely encompass the object. A recent theoretical result shows that performing a “differentiated backprojection”, that is a backprojection of the derivative of the projections, allows to obtain the exact Hilbert transform of the object within the scanner field-of-view. The data thus obtained are not affected by the truncation of the projections. The tomographic reconstruction problem is then expressed as a set of truncated Hilbert transform inversions to be calculated along one-dimensional segments within the field-of-view. The position of each one-dimensional segment, relatively to the field-of-view and the object boundaries, determines how the truncated Hilbert transform can be inverted. Specifically, if both endpoints of the segment lie outside the object, an analytical inversion formula exists; if only one endpoint lies outside the object, an inverse exists, but no inversion formula is known to this day. This thesis studies the reconstruction of “one-endpoint segments”, that is segments that have only one endpoint outside the object. The first contribution introduces an inversion method based on the singular value decomposition of the truncated discrete Hilbert transform. This decomposition reveals a strong instability caused by singular values close to zero, which is partially corrected by replacing these singular values by an estimation. The singular value decomposition also allows to understand the origin of an artifact observed during the reconstruction of one-endpoint segments. The second contribution proposes a procedure that combines the previous method and the analytic inverse which is computed along two-endpoint segments. This procedure includes a simple operation to realign the two reconstructions, thus avoiding a discontinuity in the final reconstruction. The third contribution deals with the definition of criteria to establish which Hilbert direction to choose for the reconstruction of a given pixel. Two empirical criteria are proposed, one minimizing the length of the region of the segment outside the field-of-view, the other minimizing the artifact characteristic of one-endpoint segments. All the reconstruction methods introduced in this thesis allow the reconstruction of the entire object in the field-of-view as long as the problem is not interior. The benefits of each of these contributions were mainly evaluated on numerical simulations before application to patient data.La tomodensitomĂ©trie est une mĂ©thode d’imagerie par rayons X basĂ©e sur la mesure d’intĂ©grales de lignes Ă  travers un objet. L’ensemble des intĂ©grales mesurĂ©es pour une position donnĂ©e de la source est nommĂ© « projection ». Le problĂšme de reconstruction tomographique est un problĂšme inverse consistant Ă  reconstruire l’objet Ă  partir de l’ensemble de ses projections, et la thĂ©orie classique de la tomographie a permis d’établir des procĂ©dures de reconstruction analytique Ă  partir de projections complĂštes. Cependant, certaines projections ne sont parfois pas mesurĂ©es dans leur intĂ©gralitĂ©, par exemple lorsque le champ de vue du scanner n’englobe pas intĂ©gralement l’objet. Un rĂ©sultat thĂ©orique rĂ©cent montre que rĂ©aliser une « rĂ©troprojection diffĂ©renciĂ©e », c’est-Ă -dire rĂ©troprojeter la dĂ©rivĂ©e des projections, permet d’obtenir la transformĂ©e de Hilbert exacte de l’objet au sein du champ de vue du scanner. Le problĂšme de reconstruction tomographique s’exprime alors sous la forme d’inversions de transformĂ©es de Hilbert tronquĂ©es Ă  calculer le long de segments unidimensionnels au sein du champ de vue. La position de chaque segment unidimensionnel par rapport au champ de vue et Ă  l’objet dĂ©termine comment la transformĂ©e de Hilbert tronquĂ©e peut ĂȘtre inversĂ©e. Plus prĂ©cisĂ©ment, si les deux extrĂ©mitĂ©s du segment se situent hors de l’objet, une formule d’inversion analytique existe ; si une seule extrĂ©mitĂ© se situe hors de l’objet, un inverse existe, mais aucune formule d’inversion n’est connue Ă  ce jour. Cette thĂšse Ă©tudie la reconstruction de segments n’ayant qu’une seule extrĂ©mitĂ© hors de l’objet. La premiĂšre contribution introduit une mĂ©thode d’inversion basĂ©e sur la dĂ©composition en valeurs singuliĂšres de la transformĂ©e de Hilbert discrĂšte et tronquĂ©e. Cette dĂ©composition rĂ©vĂšle une forte instabilitĂ© causĂ©e par certaines valeurs singuliĂšres proches de zĂ©ro, qui est partiellement corrigĂ©e en remplaçant ces valeurs singuliĂšres par des estimations. La dĂ©composition en valeurs singuliĂšres permet Ă©galement de comprendre l’origine d’un artĂ©fact caractĂ©ristique observĂ© lors de la reconstruction de segments n’ayant qu’une extrĂ©mitĂ© hors de l’objet. La deuxiĂšme contribution propose une procĂ©dure combinant la mĂ©thode prĂ©cĂ©dente et l’inverse analytique calculable le long des segments oĂč les deux extrĂ©mitĂ©s sont en dehors de l’objet. Cette procĂ©dure inclut une opĂ©ration simple permettant le rĂ©alignement des deux reconstructions. La troisiĂšme contribution porte sur la dĂ©finition de critĂšres cherchant Ă  Ă©tablir quelle direction de Hilbert choisir pour la reconstruction d’un pixel donnĂ©, et deux critĂšres empiriques sont proposĂ©s. Toutes les mĂ©thodes de reconstruction introduites ici permettent de reconstruire l’intĂ©gralitĂ© de l’objet dans le champ de vue tant que le problĂšme n’est pas intĂ©rieur. L’apport de chacune de ces contributions a Ă©tĂ© essentiellement Ă©valuĂ© sur simulations numĂ©riques avant application Ă  des donnĂ©es patient

    Mönsterutvinning i obestÀmda tensorer

    No full text
    Data mining is the art of extracting information from data and creating useful knowledge. Itemset mining, or pattern mining, is an important subfield that consists in finding relevant patterns in datasets. We focus on two subproblems: high-utility itemset mining, where a numerical value called utility is associated to every tuple of the dataset, and patterns are extracted whose utilities sum up to a high-enough value; and skypattern mining, which is the extraction of patterns optimizing various measures, using the notion of Pareto domination. To tackle both of these challenges, we follow a generalistic approach based on measures’ piecewise (anti-)monotonicity. This mathematical property is used in multidupehack, an algorithm in which it is proved useful to prune the search space. Our contributions are implemented as extensions of multidupehack in order to benefit from its powerful pruning strategy. It also allows the extraction of patterns in a broad context: many existing algorithms only handle datasets that are 0/1-matrices, while this work deals with uncertain tensors, i.e. n-dimensional datasets in which the values are numerical numbers between 0 and 1. Experiments on real-life datasets show the efficiency of our approach, and its ability to extract semantically highly relevant patterns. Comparative studies on reference datasets prove its competitiveness with state-of-the-art algorithms: despite its greater versatility, it is often shown faster than its competitors.Datautvinning Ă€r konsten att skapa anvĂ€ndbar kunskap genom att utvinna information ur data. Itemset-utvinning, eller mönsteranalys, Ă€r ett viktigt delomrĂ„de inom datautvinning som bestĂ„r av att hitta mönster i dataset. Denna studie fokuserar pĂ„ tvĂ„ sub-problem: high utility itemset-utvinning, mönsteranalys dĂ€r ett numerisk vĂ€rde befĂ€sts pĂ„ nyttan (utility) hos varje tupel i datasetet för att sedan utvinna endast den data med hög nytta; och skypattern mining, som Ă€r en utvinning av mönster dĂ€r man optimerar olika vĂ€rden, med hjĂ€lp av Pareto-dominans. För att tackla dessa problem anvĂ€nder vi ett generalistiskt angreppssĂ€tt som baseras pĂ„ mĂ€tvĂ€rdens delvisa (anti-)monotonicitet. Denna matematiska egenskap anvĂ€nds i multidupehack, en algoritm dĂ€r egenskapen visar sig nyttig för att beskĂ€ra sökrymder. VĂ„rt bidrag innefattar en fördjupad implementation av multidupehack för att dra nytta av dess kraftfulla beskĂ€rningsstrategi. Bidraget tillĂ„ter Ă€ven utvinning av mönster i en större kontext: mĂ„nga samtida algoritmer kan bara hantera dataset bestĂ„ende av 0/1-matriser, medan detta bidrag tacklar obestĂ€mda tensorer, n-dimensionella dataset i vilka vĂ€rdena Ă€r numeriska tal mellan 0 och 1. Experiment pĂ„ dataset ur vardagen visar effektiviteten av vĂ„rt angreppssĂ€tt och dess förmĂ„ga att utvinna mycket semantiskt relevanta mönster. Liknande studier pĂ„ referensdataset visar dess prestationsförmĂ„ga gentemot state-of-the-art algoritmer: trots algoritmens allsidighet, visar den prov pĂ„ att vara bĂ€ttre Ă€n sina konkurrenter
    corecore