388 research outputs found

    CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report Îł-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for Îł-ray measurements in the range of 20-600 keV. The prototype is a 1.5 mm thick, 64Ă—64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8Ă—8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals. We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report & gamma;-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for & gamma;-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64Ă—64 orthogonal stripeCdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8Ă—8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that the cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Looking back on 50 years of literature to understand the potential impact of influenza on extrapulmonary medical outcomes

    Get PDF
    We conducted a scoping review of the epidemiological literature from the past 50 years to document the contribution of influenza virus infection to extrapulmonary clinical outcomes. We identified 99 publications reporting 243 associations using many study designs, exposure and outcome definitions, and methods. Laboratory confirmation of influenza was used in only 28 (12%) estimates, mostly in case-control and self-controlled case series study designs. We identified 50 individual clinical conditions associated with influenza. The most numerous estimates were of cardiocirculatory diseases, neurological/neuromuscular diseases, and fetal/newborn disorders, with myocardial infarction the most common individual outcome. Due to heterogeneity, we could not generate summary estimates of effect size, but of 130 relative effect estimates, 105 (81%) indicated an elevated risk of extrapulmonary outcome with influenza exposure. The literature is indicative of systemic complications of influenza virus infection, the requirement for more effective influenza control, and a need for robust confirmatory studies

    Collective Animal Behavior from Bayesian Estimation and Probability Matching

    Get PDF
    Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is based on empirical fits to observations and we lack first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching.
In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability given by the Bayesian estimation that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior

    Simple methodology for the quantitative analysis of fatty acids in human red blood cells

    Get PDF
    In the last years, there has been an increasing interest in evaluating possible relations between fatty acid (FA) patterns and the risk for chronic diseases. Due to the long life span (120 days) of red blood cells (RBCs), their FA profile reflects a longer term dietary intake and was recently suggested to be used as an appropriate biomarker to investigate correlations between FA metabolism and diseases. Therefore, the aim of this work was to develop and validate a simple and fast methodology for the quantification of a broad range of FAs in RBCs using gas chromatography with flame ionization detector, as a more common and affordable equipment suitable for biomedical and nutritional studies including a large number of samples. For this purpose, different sample preparation protocols were tested and compared, including a classic two-step method (Folch method) with modifications and different one-step methods, in which lipid extraction and derivatization were performed simultaneously. For the one-step methods, different methylation periods and the inclusion of a saponification reaction were evaluated. Differences in absolute FA concentrations were observed among the tested methods, in particular for some metabolically relevant FAs such as trans elaidic acid and eicosapentaenoic acid. The one-step method with saponification and 60 min of methylation time was selected since it allowed the identification of a higher number of FAs, and was further submitted to in-house validation. The proposed methodology provides a simple, fast and accurate tool to quantitatively analyse FAs in human RBCs, useful for clinical and nutritional studies.This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia) through project PTDC/SAU-ENB/116929/2010 and EXPL/EMS-SIS/2215/2013. ROR acknowledges PhD scholarship SFRH/BD/97658/2013 attributed by FCT (Fundação para a Ciência e Tecnologia).info:eu-repo/semantics/publishedVersio

    Diet-Induced Changes in n-3- and n-6-Derived Endocannabinoids and Reductions in Headache Pain and Psychological Distress

    Get PDF
    Omega-3 and omega-6 fatty acids are biosynthetic precursors to endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties. We recently reported that targeted dietary manipulation—increasing omega-3 fatty acids while reducing omega-6 linoleic acid (the H3-L6 intervention)—reduced headache pain and psychological distress among chronic headache patients. It is not yet known whether these clinical improvements were due to changes in endocannabinoids and related mediators derived from omega-3 and omega-6 fatty acids. We therefore used data from this trial (n=55) to investigate (1) whether the H3-L6 intervention altered omega-3 and omega-6 derived endocannabinoids in plasma, and (2) whether diet-induced changes in these bioactive lipids were associated with clinical improvements. The H3-L6 intervention significantly increased the omega-3 docosahexaenoic acid derivatives 2-docosahexaenoylglycerol (+65%, p<0.001) and docosahexaenoylethanolamine (+99%, p<0.001), and reduced the omega-6 arachidonic acid derivative 2-arachidonoylglycerol (-25%, p=0.001). Diet-induced changes in these endocannabinoid derivatives of omega-3 docosahexaenoic acid, but not omega-6 arachidonic acid, correlated with reductions in physical pain and psychological distress. These findings demonstrate that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids in humans, and suggest that 2-docosahexaenoylglycerol and docosahexaenoylethanolamine could have physical and/or psychological pain modulating properties. Trial Registration: ClinicalTrials.gov ({"type":"clinical-trial","attrs":{"text":"NCT01157208","term_id":"NCT01157208"}}NCT01157208
    • …
    corecore