32 research outputs found

    Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling

    Get PDF
    High-resolution transmission electron microscopy and electron-energy loss spectroscopy have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe–Nb–C–N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed substoichiometric niobium carbonitrides. In order to understand the chemical composition of these precipitates, a thermodynamic formalism has been developed to evaluate the nucleation and growth rates (classical nucleation theory) and the chemical composition of nuclei and existing precipitates. A model based on the numerical solution of thermodynamic and kinetic equations is used to compute the evolution of the precipitate size distribution at a given temperature. The predicted compositions are in very good agreement with experimental results

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Etude de la précipitation des carbures et des carbonitrures de niobium dans la ferrite par microscopie électronique en transmission et techniques associées

    No full text
    La Microscopie Electronique en Transmission (MET et techniques associées) permet d\u27étudier les mécanismes de précipitation des carbures et des carbonitrures de niobium dans la ferrite. La caractérisation de la cristallographie, la taille, la forme, la fraction volumique des précipités a été entreprise sur deux alliages ferritiques modÚles sur lames minces et répliques d\u27extraction en AlOx. Des analyses réalisées en Microscopie Ionique (MI) et en Sonde Atomique Tomographique (TAP) sont venues confirmer les résultats obtenus en MET. Des plaquettes de NbN, assimilables à des zones de Guinier Preston, ont été observées dans les premiers stades de précipitation dans le systÚme Fe-Nb-C-N, coexistant avec des précipités Nb(C,N) déjà formés et de structure C.F.C., en relation d\u27orientation de Baker-Nutting avec la matrice. A des stades de précipitation plus avancés, la composition chimique des précipités a été analysée quantitativement en EELS pour des particules aussi petites que 6 nm de diamÚtre. La caractérisation expérimentale révÚle la coexistance de deux types de précipités dans le systÚme Fe-Nb-C-N : (i) des nitrures de niobium purs et (ii) des carbonitrures de niobium sous stchiométriques en métalloïdes, contenant une fraction atomique respective de carbone, croissante, et d\u27azote, décroissante, au cours de la cinétique de précipitation. Dans le but de comprendre l\u27évolution de la composition chimique de ces précipités, un modÚle thermodynamique formel a été développé

    EELS study of Niobium Carbo-nitride Nano-Precipitates in Ferrite

    No full text
    International audienceMicro-alloying steels allow higher strength to be achieved, with lower carbon contents, without a loss in toughness, weldability or formability through the generation of a fine ferrite grain size with additional strengthening being provided by the fine scale precipitation of complex carbo-nitride particles. Niobium is reported to be the most efficient micro-alloying element to achieve refinement of the final grain structure. A detailed microscopic investigation is one of the keys for understanding the first stages of the precipitation sequence, thus transmission electron microscopy (TEM) is required. Model Fe-(Nb,C) and Fe-(Nb,C,N) ferritic alloys have been studied after annealing under isothermal conditions. However the nanometre scale dimensions of the particles makes their detection, structural and chemical characterization delicate. Various imaging techniques have then been employed. Conventional TEM (CTEM) and high resolution TEM (HRTEM) were used to characterise the morphology, nature and repartition of precipitates. Volume fractions and a statistical approach to particle size distributions of precipitates have been investigated by energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) imaging. Great attention was paid to the chemical analysis of precipitates; their composition has been quantified by electron energy loss spectroscopy (EELS), on the basis of calibrated 'jump-ratios' of C-K and N-K edges over the Nb-M edge, using standards of well-defined compositions. It is shown that a significant addition of nitrogen in the alloy leads to a complex precipitation sequence, with the co-existence of two populations of particles: pure nitrides and homogeneous carbo-nitrides respectivel

    Precipitation of niobium carbonitrides in ferrite: Chemical composition measurements and thermodynamic modelling

    No full text
    International audienceHigh-resolution transmission electron microscopy and electron-energy loss spectroscopy have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe-Nb-C-N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed sub-stoichiometric niobium carbonitrides. In order to understand the chemical composition of these precipitates, a thermodynamic formalism has been developed to evaluate the nucleation and growth rates (classical nucleation theory) and the chemical composition of nuclei and existing precipitates. A model based on the numerical solution of thermodynamic and kinetic equations is used to compute the evolution of the precipitate size distribution at a given temperature. The predicted compositions are in very good agreement with experimental results

    Precipitation of niobium carbonitrides: Chemical composition measurements and modeling

    No full text
    International audienceHigh Resolution Transmission Electron Microscope and Electron Energy Loss Spectroscopy and have been used to characterize the structure and chemical composition of niobium carbonitridcs in the ferrite of a Fe-Nb-C-N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed sub-stoichiometric niobium carbonitrides. In order to predict the chemical composition of these precipitates, a thermodynamical formalism has been developed to evaluate (i) the nucleation and growth rates (classical nucleation theory) and (ii) the chemical composition of nuclei and existing precipitates. A model based on the numerical resolution of former equations, is used to compute precipitates size distribution evolution at a given temperature. The predicted compositions are in very good agreement with experimental results

    High-temperature and melting behaviour of nanocrystalline refractory compounds: an experimental approach applied to thorium dioxide.

    No full text
    Pioneering a so far unexplored research field, the behaviour from 1500 K up to melting of nanocrystalline (nc) thorium dioxide, the refractory binary oxide with the highest melting point (3651 K), was explored here for the first time using fast laser heating, multi-wavelength pyrometry and Raman spectroscopy for the analysis of samples quenched to room temperature. Nc-ThO2 was melted at temperatures hundreds of K below the melting temperature assessed for bulk thorium dioxide. A particular behaviour has been observed in the formed liquid and its co-existence with a partially restructured solid, possibly due to the metastable nature of the liquid itself. Raman spectroscopy was used to characterize the thermal-induced structural evolution of nc-ThO2. Assessment of a semi-empirical relation between the Raman active T2g mode peak characteristics (peak width and frequency) and crystallites size provided a powerful, fast and non-destructive tool to determine local crystallites growth within the nc-ThO2 samples before and after melting. This semi-quantitative analysis, partly based on a phonon-confinement model, constitutes an advantageous, more flexible, complementary approach to Electron Microscopy and Powder X-ray Diffraction for the crystallite size determination. The adopted experimental approach (laser heating coupled with Raman spectroscopy) is therefore proven to be a promising methodology for the high temperature investigation of nanostructured refractory oxides.JRC.E.3-Materials researc

    Controlled Synthesis of Thorium and Uranium Oxide Nanocrystals

    No full text
    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nanocrystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nanocrystals. The final characteristics of thorium and uranium oxide nanocrystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nanocrystals with different sizes (4.5 and 10.7 nm) as well as branched nanocrystals (overall size ca. 5 nm), nanodots (ca. 4 nm) and nanorods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised.JRC.E.5-Nuclear chemistr

    Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion

    Get PDF
    The increased attention ultrafine grained (UFG) materials have received over the last decade has been inspired by their high strength in combination with a remarkable ductility, which is a promising combination for good fatigue properties. In this paper, we focus on the effect of different carbide morphologies in the initial microstructure on the fatigue behavior after high pressure torsion (HPT) treatment of SAE 1045 steels. The two initial carbide morphologies are spheroidized as well as tempered states. The HPT processing increased the hardness of the spheroidized and tempered states from 169 HV and 388 HV to a maximum of 511 HV and 758 HV, respectively. The endurance limit increased linearly with hardness up to about 500 HV independent of the carbide morphology. The fracture surfaces revealed mostly flat fatigue fracture surfaces with crack initiation at the surface or, more often, at non-metallic inclusions. Morphology and crack initiation mechanisms were changed by the severe plastic deformation. The residual fracture surface of specimens with spheroidal initial microstructures showed well-defined dimple structures also after HPT at high fatigue limits and high hardness values. In contrast, the specimens with a tempered initial microstructure showed rather brittle and rough residual fracture surfaces after HPT
    corecore