167 research outputs found

    Metabo-lipidomics of Fibroblasts and Mitochondrial-Endoplasmic Reticulum Extracts from ALS Patients Shows Alterations in Purine, Pyrimidine, Energetic, and Phospholipid Metabolisms

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by a wide metabolic remodeling, as shown by recent metabolomics and lipidomics studies performed in samples from patient cohorts and experimental animal models. Here, we explored the metabolome and lipidome of fibroblasts from sporadic ALS patients (n = 13) comparatively to age- and sex-matched controls (n = 11), and the subcellular fraction containing the mitochondria and endoplasmic reticulum (mito-ER), given that mitochondrial dysfunctions and ER stress are important features of ALS patho-mechanisms. We also assessed the mitochondrial oxidative respiration and the mitochondrial genomic (mtDNA) sequence, although without yielding significant differences. Compared to controls, ALS fibroblasts did not exhibit a mitochondrial respiration defect nor an increased proportion of mitochondrial DNA mutations. In addition, non-targeted metabolomics and lipidomics analyses identified 124 and 127 metabolites, and 328 and 220 lipids in whole cells and the mito-ER fractions, respectively, along with partial least-squares-discriminant analysis (PLS-DA) models being systematically highly predictive of the disease. The most discriminant metabolomic features were the alteration of purine, pyrimidine, and energetic metabolisms, suggestive of oxidative stress and of pro-inflammatory status. The most important lipidomic feature in the mito-ER fraction was the disturbance of phosphatidylcholine PC (36:4p) levels, which we had previously reported in the cerebrospinal fluid of ALS patients and in the brain from an ALS mouse model. Thus, our results reveal that fibroblasts from sporadic ALS patients share common metabolic remodeling, consistent with other metabolic studies performed in ALS, opening perspectives for further exploration in this cellular model in ALS

    TDP-43 as a potential biomarker for amyotrophic lateral sclerosis:a systematic review and meta-analysis

    Get PDF
    Abstract Background Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are incurable, progressive and fatal neurodegenerative diseases with patients variably affected clinically by motor, behavior, and cognitive deficits. The accumulation of an RNA-binding protein, TDP-43, is the most significant pathological finding in approximately 95% of ALS cases and 50% of FTD cases, and discovery of this common pathological signature, together with an increasing understanding of the shared genetic basis of these disorders, has led to FTD and ALS being considered as part of a single disease continuum. Given the widespread aggregation and accumulation of TDP-43 in FTD-ALS spectrum disorder, TDP-43 may have potential as a biomarker in these diseases. Methods We therefore conducted a systematic review and meta-analysis to evaluate the diagnostic utility of TDP-43 detected in the cerebrospinal fluid (CSF) of patients with FTD-ALS spectrum disorder. Results From seven studies, our results demonstrate that patients with ALS have a statistically significantly higher level of TDP-43 in CSF (effect size 0.64, 95% CI: 0.1–1.19, p = 0.02). Conclusions These data suggest promise for the use of CSF TDP-43 as a biomarker for ALS

    Neurite density is reduced in the presymptomatic phase of C9orf72 disease

    Get PDF
    OBJECTIVE: To assess the added value of neurite orientation dispersion and density imaging (NODDI) compared with conventional diffusion tensor imaging (DTI) and anatomical MRI to detect changes in presymptomatic carriers of chromosome 9 open reading frame 72 (C9orf72) mutation. METHODS: The PREV-DEMALS (Predict to Prevent Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis) study is a prospective, multicentre, observational study of first-degree relatives of individuals carrying the C9orf72 mutation. Sixty-seven participants (38 presymptomatic C9orf72 mutation carriers (C9+) and 29 non-carriers (C9-)) were included in the present cross-sectional study. Each participant underwent one single-shell, multishell diffusion MRI and three-dimensional T1-weighted MRI. Volumetric measures, DTI and NODDI metrics were calculated within regions of interest. Differences in white matter integrity, grey matter volume and free water fraction between C9+ and C9- individuals were assessed using linear mixed-effects models. RESULTS: Compared with C9-, C9+ demonstrated white matter abnormalities in 10 tracts with neurite density index and only 5 tracts with DTI metrics. Effect size was significantly higher for the neurite density index than for DTI metrics in two tracts. No tract had a significantly higher effect size for DTI than for NODDI. For grey matter cortical analysis, free water fraction was increased in 13 regions in C9+, whereas 11 regions displayed volumetric atrophy. CONCLUSIONS: NODDI provides higher sensitivity and greater tissue specificity compared with conventional DTI for identifying white matter abnormalities in the presymptomatic C9orf72 carriers. Our results encourage the use of neurite density as a biomarker of the preclinical phase. TRIAL REGISTRATION NUMBER: NCT02590276

    Clinical trials in pediatric ALS: a TRICALS feasibility study.

    Get PDF
    Background: Pediatric investigation plans (PIPs) describe how adult drugs can be studied in children. In 2015, PIPs for Amyotrophic Lateral Sclerosis (ALS) became mandatory for European marketing-authorization of adult treatments, unless a waiver is granted by the European Medicines Agency (EMA).Objective: To assess the feasibility of clinical studies on the effect of therapy in children (<18 years) with ALS in Europe.Methods: The EMA database was searched for submitted PIPs in ALS. A questionnaire was sent to 58 European ALS centers to collect the prevalence of pediatric ALS during the past ten years, the recruitment potential for future pediatric trials, and opinions of ALS experts concerning a waiver for ALS.Results: Four PIPs were identified; two were waived and two are planned for the future. In total, 49 (84.5%) centers responded to the questionnaire. The diagnosis of 44,858 patients with ALS was reported by 46 sites; 39 of the patients had an onset < 18 years (prevalence of 0.008 cases per 100,000 or 0.087% of all diagnosed patients). The estimated recruitment potential (47 sites) was 26 pediatric patients within five years. A majority of ALS experts (75.5%) recommend a waiver should apply for ALS due to the low prevalence of pediatric ALS.Conclusions: ALS with an onset before 18 years is extremely rare and may be a distinct entity from adult ALS. Conducting studies on the effect of disease-modifying therapy in pediatric ALS may involve lengthy recruitment periods, high costs, ethical/legal implications, challenges in trial design and limited information

    European Academy of Neurology (EAN) guideline on the management of amyotrophic lateral sclerosis in collaboration with European Reference Network for Neuromuscular Diseases (ERN EURO-NMD)

    Get PDF
    Background This update of the guideline on the management of amyotrophic lateral sclerosis (ALS) was commissioned by the European Academy of Neurology (EAN) and prepared in collaboration with the European Reference Network for Neuromuscular Diseases (ERN EURO-NMD) and the support of the European Network for the Cure ALS (ENCALS) and the European Organization for Professionals and Patients with ALS (EUpALS). Methods Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the effectiveness of interventions for ALS. Two systematic reviewers from Cochrane Response supported the guideline panel. The working group identified a total of 26 research questions, performed systematic reviews, assessed the quality of the available evidence, and made specific recommendations. Expert consensus statements were provided where insufficient evidence was available. Results A guideline mapping effort revealed only one other ALS guideline that used GRADE methodology (a National Institute for Health and Care Excellence [NICE] guideline). The available evidence was scarce for many research questions. Of the 26 research questions evaluated, the NICE recommendations could be adapted for 8 questions. Other recommendations required updates of existing systematic reviews or de novo reviews. Recommendations were made on currently available disease-modifying treatments, multidisciplinary care, nutritional and respiratory support, communication aids, psychological support, treatments for common ALS symptoms (e.g., muscle cramps, spasticity, pseudobulbar affect, thick mucus, sialorrhea, pain), and end-of-life management. Conclusions This update of the guideline using GRADE methodology provides a framework for the management of ALS. The treatment landscape is changing rapidly, and further updates will be prepared when additional evidence becomes available

    SLITRK2, an X-linked modifier of the age at onset in C9orf72 frontotemporal lobar degeneration

    Get PDF
    The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms

    Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers

    Get PDF
    A (GGGGCC) n repeat expansion in C9orf72 gene is the major cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The relations between the repeats size and the age at disease onset (AO) or the clinical phenotype (FTD vs. ALS) were investigated in 125 FTD, ALS, and presymptomatic carriers. Positive correlations were found between repeats number and the AO (p &lt; 10 e−4 ) but our results suggested that the association was mainly driven by age at collection (p &lt; 10 e−4 ). A weaker association was observed with clinical presentation (p = 0.02), which became nonsignificant after adjustment for the age at collection in each group. Importantly, repeats number variably expanded or contracted over time in carriers with multiple blood samples, as well as through generations in parent-offspring pairs, conversely to what occurs in several expansion diseases with anticipation at the molecular level. Finally, this study establishes that measure of repeats number in lymphocytes is not a reliable biomarker predictive of the AO or disease outcome in C9orf72 long expansion carriers

    Glycans in Sera of Amyotrophic Lateral Sclerosis Patients and Their Role in Killing Neuronal Cells

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N297-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N297-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage

    TDP-43 Identified from a Genome Wide RNAi Screen for SOD1 Regulators

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a late-onset, progressive neurodegenerative disease affecting motor neurons in the brain stem and spinal cord leading to loss of voluntary muscular function and ultimately, death due to respiratory failure. A subset of ALS cases are familial and associated with mutations in superoxide dismutase 1 (SOD1) that destabilize the protein and predispose it to aggregation. In spite of the fact that sporadic and familial forms of ALS share many common patho-physiological features, the mechanistic relationship between SOD1-associated and sporadic forms of the disease if any, is not well understood. To better understand any molecular connections, a cell-based protein folding assay was employed to screen a whole genome RNAi library for genes that regulate levels of soluble SOD1. Statistically significant hits that modulate SOD1 levels, when analyzed by pathway analysis revealed a highly ranked network containing TAR DNA binging protein (TDP-43), a major component of aggregates characteristic of sporadic ALS. Biochemical experiments confirmed the action of TDP-43 on SOD1. These results highlight an unexpected relationship between TDP-43 and SOD1 which may have implications in disease pathogenesis

    The impact of age on genetic testing decisions in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative syndrome. In up to 20% of cases, a family history is observed. Although Mendelian disease gene variants are found in apparently sporadic ALS, genetic testing is usually restricted to those with a family history or younger patients with sporadic disease. With the advent of therapies targeting genetic ALS, it is important that everyone treatable is identified. We therefore sought to determine the probability of a clinically actionable ALS genetic test result by age of onset, globally, but using the UK as an exemplar. Blood-derived DNA was sequenced for ALS genes, and the probability of a clinically actionable genetic test result estimated. For a UK subset, age- and sex-specific population incidence rates were used to determine the number of such results missed by restricting testing by age of onset according to UK’s National Genomic Test Directory criteria. There were 6274 people with sporadic ALS, 1551 from the UK. The proportion with a clinically actionable genetic test result ranged between 0.21 [95% confidence interval (CI) 0.18–0.25] in the youngest age group to 0.15 (95% CI 0.13–0.17) in the oldest age group for a full gene panel. For the UK, the equivalent proportions were 0.23 (95% CI 0.13–0.33) in the youngest age group to 0.17 (95% CI 0.13–0.21) in the oldest age group. By limiting testing in those without a family history to people with onset below 40 years, 115 of 117 (98% of all, 95% CI 96%–101%) clinically actionable test results were missed. There is a significant probability of a clinically actionable genetic test result in people with apparently sporadic ALS at all ages. Although some countries limit testing by age, doing so results in a significant number of missed pathogenic test results. Age of onset and family history should not be a barrier to genetic testing in ALS
    corecore