24 research outputs found

    Comparing research investment to United Kingdom institutions and published outputs for tuberculosis, HIV and malaria: A systematic analysis across 1997-2013

    Get PDF
    Background: The "Unfinished Agenda" of infectious diseases is of great importance to policymakers and research funding agencies that require ongoing research evidence on their effective management. Journal publications help effectively share and disseminate research results to inform policy and practice. We assess research investments to United Kingdom institutions in HIV, tuberculosis and malaria, and analyse these by numbers of publications and citations and by disease and type of science. Methods: Information on infection-related research investments awarded to United Kingdom institutions across 1997-2010 were sourced from funding agencies and individually categorised by disease and type of science. Publications were sourced from the Scopus database via keyword searches and filtered to include only publications relating to human disease and containing a United Kingdom-based first and/or last author. Data were matched by disease and type of science categories. Investment (United Kingdom pounds) and publications were compared to generate an 'investment per publication' metric; similarly, an 'investment per citation' metric was also developed as a measure of the usefulness of research. Results: Total research investment for all three diseases was £1.4 billion, and was greatest for HIV (£651.4 million), followed by malaria (£518.7 million) and tuberculosis (£239.1 million). There were 17,271 included publications, with 9,322 for HIV, 4,451 for malaria, and 3,498 for tuberculosis. HIV publications received the most citations (254,949), followed by malaria (148,559) and tuberculosis (100,244). According to UK pound per publication, tuberculosis (£50,691) appeared the most productive for investment, compared to HIV (£61,971) and malaria (£94,483). By type of science, public health research was most productive for HIV (£27,296) and tuberculosis (£22,273), while phase I-III trials were most productive for malaria (£60,491). According to UK pound per citation, tuberculosis (£1,797) was the most productive area for investment, compared to HIV (£2,265) and malaria (£2,834). Public health research was the most productive type of science for HIV (£2,265) and tuberculosis (£1,797), whereas phase I-III trials were most productive for malaria (£1,713). Conclusions: When comparing total publications and citations with research investment to United Kingdom institutions, tuberculosis research appears to perform best in terms of efficiency. There were more public health-related publications and citations for HIV and tuberculosis than other types of science. These findings demonstrate the diversity of research funding and outputs, and provide new evidence to inform research investment strategies for policymakers, funders, academic institutions, and healthcare organizations.Infectious Disease Research Networ

    Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion<sup>®</sup>CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke.</p> <p>Results</p> <p>Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and <sup>15</sup>N NMR. Diaion<sup>®</sup>CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion<sup>®</sup>CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion<sup>®</sup>CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics.</p> <p>Conclusions</p> <p>This study has shown that Diaion<sup>®</sup>CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke.</p

    Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease-Opportunities for Therapy.

    Get PDF
    Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aβ), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aβ plaques in the brain in Alzheimer's disease (AD) and deposition of Aβ within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aβ in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment

    Suited Ground Vacuum Chamber Testing Decompression Sickness Tiger Team Report

    No full text
    Suited vacuum chamber testing is critical to flight crew training, sustaining engineering, and development engineering. Most suited vacuum chamber testing at NASAs Johnson Space Center (JSC) involves crewmembers or human test subjects working at a hypobaric pressure of 4.3 psia, which requires that an oxygen prebreathe be performed prior to decompression to reduce the risk of decompression sickness (DCS). Since 1986, NASAs policy has been to require a 4-hour resting prebreathe for hypobaric chamber exposures of 4.2 psia lasting greater than 30 minutes. There have been no reports of Type II (i.e., serious, potentially life-threatening) DCS at NASA while using this prebreathe protocol. Several chamber runs, believed to be approximately 5% of all runs, are believed to have been terminated due to Type I DCS symptoms that were performance impairing; however, detailed records of DCS symptoms during suited vacuum chamber runs are not available. The adequacy of the 4-hour prebreathe protocol, as well as the processes by which prebreathe protocols and policies are established, became the subject of significant discussion in April 2018 when medical planning was initiated for chamber runs that were scheduled to occur later in 2018 that would last 8 hours or more with high metabolic rates

    The biology of thermoacidophilic archaea from the order Sulfolobales

    No full text
    Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered more than 50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further the probe novel features of these microbes, but have also paved the way for potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes, and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes

    Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease: Opportunities for therapy.

    No full text
    This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy
    corecore