223 research outputs found

    Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules.

    Get PDF
    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules-where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core-shell microcapsules, gives access to a new generation of innovative self-assembled constructs.This work was supported by the Engineering Physical Sciences Research Council, Institutional Sponsorship 2012-University of Cambridge EP/K503496/1, and the Translational Grant EP/H046593/1; Y.Z. and R.P. were also funded from the Starting Investigator grant ASPiRe (No. 240629) from the European Research Council and the Isaac Newton Trust research grant No. 13.7(c). A.S. was supported by the Nano Doctoral Training Centre (NanoDTC).This is the final version of the article. It first appeared from Wiley at http://dx.doi.org/10.1002/adfm.20150107

    Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery.

    Get PDF
    Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated host-guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble (fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized structure benefits from the dynamic nature of the supramolecular interaction and offers synergistic delivery of cargos with triggered release or through photocontrolled porosity. This demonstration of premeditated hierarchical assembly, where interactions from the molecular to microscale are designed, illustrates the power of this route toward accessing the next generation of functional materials and encapsulation strategies.This work was supported by the Engineering and Physical Sciences Research Council, Institutional Sponsorship 2012-University of Cambridge EP/K503496/1 and the Translational Grant EP/H046593/1; Y. Zheng and R. Parker were also funded from the European Research Council Starting Investigator grant ASPiRe (No. 240629) and the Isaac Newton Trust research grant No. 13.7(c). R. Coulston received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Proof of Concept Grant Agreement n. 297504; Y. Lan is supported by the CSC Cambridge Scholarship.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/ via http://dx.doi.org/10.1021/acsami.6b0066

    Anomalous Behavior of Ru for Catalytic Oxidation: A Theoretical Study of the Catalytic Reaction CO + 1/2 O_2 --> CO_2

    Full text link
    Recent experiments revealed an anomalous dependence of carbon monoxide oxidation at Ru(0001) on oxygen pressure and a particularly high reaction rate. Below we report density functional theory calculations of the energetics and reaction pathways of the speculated mechanism. We will show that the exceptionally high rate is actuated by a weakly but nevertheless well bound (1x1) oxygen adsorbate layer. Furthermore it is found that reactions via scattering of gas-phase CO at the oxygen covered surface may play an important role. Our analysis reveals, however, that reactions via adsorbed CO molecules (the so-called Langmuir-Hinshelwood mechanism) dominate.Comment: 5 pages, 4 figures, Phys. Rev. Letters, Feb. 1997, in prin

    Adiabatic population transfer via multiple intermediate states

    Get PDF
    This paper discusses a generalization of stimulated Raman adiabatic passage (STIRAP) in which the single intermediate state is replaced by NN intermediate states. Each of these states is connected to the initial state \state{i} with a coupling proportional to the pump pulse and to the final state \state{f} with a coupling proportional to the Stokes pulse, thus forming a parallel multi-Λ\Lambda system. It is shown that the dark (trapped) state exists only when the ratio between each pump coupling and the respective Stokes coupling is the same for all intermediate states. We derive the conditions for existence of a more general adiabatic-transfer state which includes transient contributions from the intermediate states but still transfers the population from state \state{i} to state \state{f} in the adiabatic limit. We present various numerical examples for success and failure of multi-Λ\Lambda STIRAP which illustrate the analytic predictions. Our results suggest that in the general case of arbitrary couplings, it is most appropriate to tune the pump and Stokes lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure

    Designing a spoken dialogue interface to an intelligent cognitive assistant for people with dementia

    Get PDF
    Intelligent cognitive assistants support people who need help performing everyday tasks by detecting when problems occur and providing tailored and context-sensitive assistance. Spoken dialogue interfaces allow users to interact with intelligent cognitive assistants while focusing on the task at hand. In order to establish\ud requirements for voice interfaces to intelligent cognitive assistants, we conducted three focus groups with people with dementia, carers, and older people without a diagnosis of dementia. Analysis of the focus group data showed that voice and interaction style should be chosen based on the preferences of the user, not those of the carer. For people with dementia, the intelligent cognitive assistant should act like a patient,encouraging guide, while for older people without dementia, assistance should be to the point and not patronising. The intelligent cognitive assistant should be able to adapt to cognitive decline

    Effects of zilpaterol hydrochloride and zinc methionine on growth performance and carcass characteristics of beef bulls

    Get PDF
    Sixty beef bulls with a body weight (BW) of 314.79 16.2 kg were used to evaluate the effects of zilpaterol hydrochloride (ZH) and zinc methionine (ZM) on growth performance and carcass characteristics. The experimental design was a randomized complete block, with a factorial 22 arrangement of treatments (ZH: 0 and 0.15 mg kg 1 BW; ZM: 0 and 80 mg kg 1 dry matter). The ZH increased (PB0.05) the final BW, average daily gain, feed conversion, carcass yield and longissimus dorsi area. Bulls fed ZH plus ZM had less (PB0.01) backfat thickness and intramuscular fat (IMF) compared with those fed ZH or ZM alone. The ZH increased (PB0.02) the meat crude protein content and cooking loss. It is therefore concluded that ZH increases growth performance, carcass yield, longissimus dorsi area, and meat crude protein. The interaction of ZM and ZH did not present additional advantages. The reason for the reduction in backfat thickness and IMF by ZH plus ZM is unclear, and implies that our knowledge of b-agonistic adrenergic substances and their interactions with minerals is incomplete

    Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America

    Get PDF
    Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets
    corecore