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ABSTRACT: Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient 

strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly 

process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in 

turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated 

host-guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules 

can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble 

(fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized 
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structure benefits from the dynamic nature of the supramolecular interaction and offers 

synergistic delivery of cargos with triggered release or through photo-controlled porosity. This 

demonstration of premeditated hierarchical assembly, where interactions from the molecular to 

micro-scale are designed, illustrates the power of this route towards accessing the next 

generation of functional materials and encapsulation strategies. 

INTRODUCTION 

Nature assembles diverse structures through self-assembly.
1-4

 This bottom-up approach 

towards functional structures provides inspiration for the development of the next-generation of 

advanced smart materials.
5-9

 In the field of polymeric materials, the assembly of block 

copolymers into defined conformations can mimic the structure of the cell membrane.
10-12

 In 

analogy to phospholipids, synthetic amphiphilic block copolymers possess a hydrophilic head 

and hydrophobic tail, allowing them to self-assemble into multi-lamellar vesicles and spherical 

or rod-like micelles.
13-16

 Not only does this assembly process allow investigation of bottom-up 

assembly, it has generated systems that have potential applications in the fields of material 

science, bioengineering, and biomedicine.
17-21

 However, due to the lack of target-oriented and 

predictable assembly protocols, few studies have considered employing block copolymer 

assemblies as a sub-unit in the preparation of higher order superstructures.
22-24

 Here we exploit 

hierarchical assembly of amphiphilic block copolymers on the molecular, sub-micro and micro-

scale to form hollow supramolecular microcapsules capable of storage and subsequent controlled 

release of hydrophobic and hydrophilic incompatible cargos. 

Molecular recognition offers the opportunity to guide the assembly of complex structures by 

controlling the connectivity of the component building blocks. In the supramolecular regime, 
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building blocks are linked by non-covalent interactions, such as hydrogen bonds or hydrophobic 

forces, to create higher ordered architectures.
25-30

 The reversibility of supramolecular assembly 

imparts dynamic properties to the resultant material, whereby a specific external stimulus can be 

used to engineer responsivity, recyclability, self-repairing, and even self-replication.
31-35

  

Cucurbit[8]uril (CB[8]) is a barrel-shaped macrocycle that has been extensively applied to 

the construction of extended supramolecular architectures, exhibiting high mechanical strength, 

rapid-healing, and stimuli responsiveness.
36-39

 Through the formation of a 1:1:1 ternary host-

guest complex, CB[8] can be viewed as a molecular “handcuff”, capable of linking materials 

with high selectivity and affinity in water (Keq ≤10
12

 M
-2

).
40, 41

 The formation of the ternary 

complex is step-wise, with initial binding of an electron-deficient aromatic guest (e.g. methyl 

viologen) necessary for the subsequent inclusion of an electron-rich second guest (e.g. 

azobenzene). The utility of CB[8] as a supramolecular cross-linking agent has been illustrated in 

fabrication of polymeric systems where two complementary polymers are assembled via the 

host-guest interaction, providing a powerful toolbox for preparation of bespoke materials.
42-44

 

Droplet-based microfluidics is a versatile and powerful technology used to generate discrete 

microdroplets with uniform size and tunable diameter. Each droplet can be considered a micro-

scale version of the traditional chemists’ reaction flask, allowing for identical composition and 

rapid mixing, enabling massively-parallelized experimentation.
45-47

 As such, microdroplets offer 

superb templates to fabricate uniform micro-materials, including hydrogel beads and 

microcapsules.
50-54

 More recently, “smart” microcapsules containing functional polymers in their 

membrane have been fabricated from double or triple emulsion microdroplets, enabling control 

over cargo release via external stimuli.
55-58

 The formation of microcapsules from such nested 
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microdroplets requires either complicated microfluidic devices that control a multi-stage 

sequential emulsion or precise control over the wettability of each droplet.
59-60

 Furthermore, the 

carriage of multiple, incompatible cargos (e.g. hydrophilic / hydrophobic) within a microcapsule 

relies on compartmentalization between the hollow core and the outer shell, requiring delicate 

synchronization of the frequencies of microdroplet generation.
61-63

 As such, production of 

microcapsules with multiple cargos through droplet-based microfluidics remains a significant 

challenge. 

We previously demonstrated a one-step approach to construct supramolecular 

microcapsules,
45-46, 53-54

 these systems (typically) encapsulate hydrophilic cargo(s) within the 

microcapsule core. The aim here is to utilize this sub-micron shell as a secondary compartment; 

enabling synergistic loading of segregated cargos in a prescribed ratio. We have shown that 

small molecules can be retained within a dendritic microcapsule,
47

 with the caveat that this 

requires specialized synthesis to prepare the hyper-branched polymers. In contrast, micelles offer 

ready access to well-defined nanostructures in solution with controllable morphologies, sizes, 

and functions.
48-49

 

In this work, we combine nano-scale micelle formation with CB[8]-mediated molecular-

scale recognition within microfluidic droplets to demonstrate the hierarchical assembly of 

amphiphilic block copolymers, generating supramolecular microcapsules with uniform size and 

dual-cargo loading. This single emulsion microfluidic approach exploits self-assembly on the 

molecular, nano- and micro-scales, whereby block copolymers are assembled into micelles (~200 

nm), which in turn are assembled at the interface of a microdroplet (~70 µm) where they are 

cross-linked via a supramolecular host-guest complex with CB[8], to form a microcapsule. The 

segregated domains of the microcapsule core and micellar shell enable simultaneous 
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encapsulation of both hydrophilic and hydrophobic cargos in a single structure. Furthermore, the 

dynamic nature of the supramolecular cross-links allows for on-demand release of cargo, either 

by disassembly of the capsule shell or upon a triggered increase in porosity.  

RESULTS AND DISCUSSION  

Synthesis of functional polymers 

The starting amphiphilic diblock copolymer poly(methyl methacrylate)-block-poly(acrylic 

acid) containing a pendant azobenzene (P1) was synthesized via two-step reversible addition-

fragmentation chain transfer (RAFT) polymerization using the unmodified chain transfer agent 

4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDTPA) (Figure 1a). 

CDPTA was used as it successfully mediates the polymerization of a wide variety of monomers 

in different solvent conditions with control of molecular weight and polydispersity (PDI). The 

first poly(methyl methacrylate) block 1 was synthesized in 2-butanone using standard RAFT 

conditions. The feed ratio of methyl methacrylate monomer to CDPTA was 50:1. Analysis by 
1
H 

NMR spectroscopy showed the polymerization reached 83% conversion after 24 h. 

Tetrahydrofuran (THF) gel permeation chromatography (GPC) analysis reported the average 

molecular weight (Mw) of the poly(methyl methacrylate) block as 4.2 kDa (PDI = 1.1), 

indicating good control over the extent of polymerization. The formed poly(methyl methacrylate) 

polymer then underwent a second block chain extension polymerization by adding initiator, 

acrylic acid monomer and azobenzene acrylate monomer. The GPC showed that the Mw 

increased from 4.2 kDa to 16.0 kDa after chain extension. 
1
H NMR analysis showed the diblock 

copolymer structure contained 4.5 mol% azobenzene guests in the final polymer, P1 (Figure S1, 

Supporting information). 
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Figure 1 Synthetic scheme for the preparation of (a) azobenzene-functionalized amphiphilic 

diblock copolymer (P1) and (b) viologen-functionalized hydrophilic copolymer (P2). 

To synthesize a methyl viologen (MV) multivalent side-chain functional polymer, one-step 

conventional free radical polymerisation was used to prepare water soluble poly(N-

vinylpyrrolidone)-co-poly(hydroxyethyl methacrylate)-co-poly(MV-styrene) (P2, Figure 1b). A 

styrenic monomer bearing a MV moiety was synthesized from 4-vinylbenzylchloride and methyl 

bipyridinium iodide salt in high yield (85%). Water soluble monomer N-vinylpyrrolidone and 

hydroxyethyl methacrylate were used to copolymerize with styrenics to form the copolymer, P2. 

Aqueous GPC and 
1
H NMR demonstrated that P2 had Mw of 27 kDa (PDI = 1.4) and contained 

approximately of 8.3 mol% of MV guest. (Figure S2, Supporting information). 

 



 7 

Microfluidic droplets facilitated hierarchical assembly 

The hierarchical assembly process, whereby linear amphiphilic block copolymers are self-

assembled into micelles, which in turn are assembled at the interface of monodisperse 

microfluidic droplets to form supramolecular microcapsules, is illustrated in Figure 2. The first 

stage of assembly occurs through the micellization of amphiphilic diblock copolymer P1 (Figure 

2a). In aqueous media, P1 directs the hydrophilic poly(acrylic acid) head into the solvent, while 

shielding the hydrophobic poly(methyl methacrylate) tail to form micelles. As a result, the 

hydrophobic dye, Nile Red, is encased within the hydrophobic core of P1 micelles, enabling it to 

be dispersed in water (Figure S3, Supporting information). The peak of the emission spectrum of 

Nile Red shifted from 592 nm to 620 nm when the Nile Red was transferred from 

tetrahydrofuran to water in micelles (Figure S4, Supporting information).
[64-65]

 More importantly, 

the outer face of the micelle can be selectively functionalized. Here, the presence of pendant 

azobenzene groups within the hydrophilic head of the micelles facilitates supramolecular 

assembly via CB[8] (Figure 2b), allowing them to be employed as sub-units in the construction 

of higher level structures.  

The second stage of hierarchical assembly occurs from CB[8]-mediated host-guest 

interaction, whereby P1 micelles are assembled at the interface of microfluidic droplets via an 

electrostatic interaction with a charged-surfactant.
53

 As shown in Figure 2a, an aqueous flow 

containing P2 and CB[8] was co-injected with a second flow containing Nile Red-loaded P1 

micelles into a microfluidic flow-focusing device. After injection, the two fluids met as a laminar 

co-flow, before arrival at the flow-focusing junction where it was segmented into microdroplets 

by a perpendicular flow of perfluorinated oil. After generation, the spherical microdroplets 
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passed through a winding channel to encourage thorough mixing of the three components, before 

collection for further study. 

 

Figure 2 (a) Microdroplet-templated hierarchical assembly of supramolecular microcapsules 

from amphiphilic blocks copolymers. (b) Step-wise formation of the three-component host-guest 

complex with CB[8] in water. 

Aqueous microdroplets containing Nile Red-loaded P1 micelles, P2, and CB[8] were 

generated at a combined aqueous flow rate of 100 µL/h, with the continuous oil phase (Fluorinert 

FC-40, 3 wt% fluorous surfactant ‘XL-01-171’ and 1.5 wt% charged-surfactant ‘amine-Krytox’) 

injected at 200 µL/h. The equimolar concentration of MV : azobenzene : CB[8] within the mixed 

microdroplet was 15 µM, allowing for formation of the 1:1:1 heteroternary complex. As shown 

in Figure 3a, at this flow rate the microdroplets exhibit a low level of polydispersity, with a mean 

diameter of 67 µm and coefficient of variation of 0.6 % (Figure 3b). Fluorescence microscopy 

was used to track the assembly within the microdroplets; as shown in Figure 3c, fluorescence 
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from Nile Red is localized at the water/oil interface, illustrating the formation of the 

supramolecular microcapsule. On evaporation of the aqueous microdroplet at room temperature, 

the interfacial assembly of P1 micelles is locked by P2, via supramolecular CB[8] cross-links, to 

give hollow microcapsule shells. 

 

Figure 3 (a) Optical micrograph of aqueous microdroplets containing CB[8], P2 and Nile red-

loaded P1 micelles. (b) Normalized distribution of microdroplet diameter, exhibiting a narrow 

size distribution (coefficient of variation 0.6%). (c) Fluorescence image of microdroplets, 

illustrating the assembly of Nile red-loaded P1 micelles at the droplet interface. (d) Optical 

micrographs of evaporative microcapsule formation, exemplifying the collapsing structure. (e) 

Optical micrograph and (f-g) scanning electron microscope (SEM) images of dry microcapsules, 

illustrating the micelles embedded within the skin. 
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In contrast to solid microspheres, the prepared microcapsules comprise an empty core and a 

supramolecular composite shell. As a result, evaporation of the aqueous microdroplet led to a 

steady decrease in diameter until cross-linking density at the interface was sufficient for an 

elastic shell to form. After this point, further evaporation resulted in collapse and distortion of 

this flexible shell, until eventual collapse onto the glass substrate (Figure 3d). As shown in 

Figure 3e, isolated stable microcapsules with uniform size remain after dehydration of the 

microdroplets. To assess the sub-structure of the microcapsule shell, the surface morphology was 

studied by scanning electron microscopy (SEM). Figure 3f reveals that microcapsules collapse 

upon drying due to a lack of internal support, with folds and creases clearly visible on the surface. 

The enlarged image (Figure 3g) further shows that the micro-capsule skin consists of a 

composite network of micelles embedded within a matrix of P2. 

 

Figure 4 (a) Fluorescent image of monodisperse microcapsules containing both water-soluble 

FITC-dextran cargo (500 kDa, green) and the hydrophobic dye, Nile Red. (b) Optical micrograph 

of dry microcapsules and (c) fluorescent micrograph of microcapsules after rehydration. 

The hierarchical microcapsule structure allows for both hydrophilic and hydrophobic cargos 

to be loaded simultaneously. To illustrate this concept, microcapsules were prepared that 

encapsulated both the water-soluble cargo, fluorescein isothiocyanate-dextran (FITC-dextran, 

500 kDa) and the organic-soluble dye, Nile Red. As illustrated in Figure 4a, FITC-dextran (green 
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fluorescence) was loaded within the aqueous flow and correspondingly is located within the core 

of the microcapsule, whereas Nile Red is trapped within the micelles that comprise the 

microcapsule shell (red fluorescence). The cargo-loaded microcapsules were collected and air 

dried, forming stable dehydrated structures that can be stored and rehydrated (Figure 4b, c). 

When loaded with cargo, osmotic pressure results in a near-doubling of the dry microcapsule 

diameter during rehydration, however, the supramolecular cross-link is still sufficient to retain 

both encapsulated cargos without leakage (Figure 4c). Furthermore, the microcapsules were 

shown to survive five cycles of dehydration/rehydration, with the integrity of the microcapsule 

skin evidenced by the retention of the encapsulated cargo (Figure S5, support information).  

The efficacy of the supramolecular microcapsules for the storage and release of cargo was 

investigated using a family of FITC-dextran as molecular probes. After rehydration for 30 min, 

500 kDa FITC-dextran was fully retained by the microcapsule, whereas 250 kDa FITC-dextran 

displayed weak permeability and 70 kDa was able to diffuse freely into the external environment 

(Figure S6, supporting information). 500 kDa FITC-dextran has a Stoke’s radius of around 14.7 

nm,
66

 given that it is not able to readily diffuse out of the microcapsules this data suggests an 

upper limit for the micropore size of the capsule membrane. 

Disassembly and controlled release of cargo 

The non-covalent nature of supramolecular interactions offers an opportunity to disassemble 

the microcapsule shell in a controlled manner, and correspondingly release encapsulated cargo. 

The introduction of a competitive guest for CB[8], such as 1-adamantylamine (ADA), is one 

such approach (Figure 5a). Cargo-loaded microcapsules were prepared as above, but instead 

rehydrated in an aqueous solution of ADA (1 mM). As shown in Figure 5b and 5c, immediate 
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disassembly of the microcapsules was observed, with triggered dispersal of both hydrophilic 

FITC-dextran and hydrophobic Nile Red cargo (within micelles) into the bulk media. The 

released cargo was also examined by fluorescence spectroscopy (Figure S7, supporting 

information), which shows two fluorescence emission peaks of 520 nm (released FITC-dextran 

cargo) and 617 nm (released Nile Red cargo) upon ADA triggering. 

 

Figure 5 (a) Schematic of the disassembly of the ternary complex between MV, azobenzene, and 

CB[8], in the presence of competitive guest, 1-adamantylamine (ADA). Optical and fluorescent 

micrographs of dual cargo-loaded (Nile Red and 500 kDa FITC-dextran) microcapsules; (b) 

before and (c) after hydration for 3 min in an aqueous solution of 1-adamantylamine (1 mM). 
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Figure 6 (a) Schematic of the photochemical disassembly of the ternary complex between MV, 

azobenzene, and CB[8]. (b-d) Fluorescent micrographs of the triggered release of 500 kDa FITC-

dextran cargo from hydrated microcapsules, upon exposure to ultraviolet light. (e-f) Release 

profiles of (e) FITC-dextran and (f) Nile Red from microcapsules as a function of the rehydration 

time. 

Photochemistry offers a route to control the extent of supramolecular cross-linking. The 

azobenzene moiety can undergo a reversible trans-to-cis photoisomerization under exposure to 

UV light (Figure 6a). This leads to dissociation of the 1:1:1 heteroternary complex to give a 

MV⊂CB[8] binary complex and free cis-azobenzene. Photoisomerization of the azobenzene 

does not lead to quantitative disassembly, with the photostationary state reported to be up to 80% 

cis- in the presence of CB[8].
67

 To investigate the suitability of photochemical stimulation for 

controlled, sustained release of cargo, microcapsules loaded with FITC-dextran (500 kDa) were 
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hydrated in water and then exposed to ultraviolet light (30 s, λmax = 377 nm). As shown in 

Figures 6b-d the photo-induced reduction in cross-linking allowed the microcapsule to enlarge, 

resulting in release of the previously retained FITC-dextran cargo. A control experiment in the 

absence of UV light did not show any release of FITC-dextran cargo (Figure S8, supporting 

information). 

The release of both cargoes was quantified using a fluorescence spectrometer, given that 

there was no significant photobleaching of either FITC-dextran or Nile Red under 3.5 min UV 

irradiation from a LZC-ORG photo-reactor (λmax = 377 nm, Figure S9, Supporting Information). 

As shown in Figure 6e, exposure to UV for 3 min led to an increase in the porosity of the 

microcapsule that gave rise to the release of FITC-dextran cargo. An amount of 52% was 

released after 3 min irradiation, increasing to 84% after a further 18 min in the dark. A control 

experiment showed that in the absence of any UV exposure, only 6% of FITC-dextran cargo was 

released over this time-scale. In contrast to FITC-dextran, a negligible release of Nile Red in 

micelles was observed after 21 min rehydration, either with or without exposure of the 

microcapsules to UV light (Figure 6f, Figure S10 in Supporting Information). This differs 

dramatically from ADA-triggered release, where both cargoes were rapidly dispersed into the 

surrounding media (Figure 5). Such differing release profiles is attributed to incomplete photo 

isomerisation of the azobenzene units to the cis-isomer upon exposure to UV light, resulting in a 

reduction in the number of cross-links within the polymer shell, but not complete disassembly as 

seen with ADA. This has the effect of increasing the porosity of the capsule shell and thus 

enables release of cargo from the core, but does not break apart the capsule resulting in retention 

of cargo in the shell. The ability to tune the porosity of the microcapsule without disassembling 

the shell allows for the exclusive or step-wise release of only the macromolecular cargo, with the 
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hydrophobic small molecule cargo Nile Red fully retained (Figure 6f, Figure S10 in Supporting 

Information). This phenomenon could be employed in the future to construct a biphasic micro-

reactor, whereby hydrophobic catalysts are immobilized in the shell of the microcapsule, with 

flow in and out of hydrophilic reagents and products, respectively, controlled remotely by 

photochemical triggers. 

CONCLUSIONS 

In summary, by combining nano-scale micellization with CB[8]-mediated molecular-scale 

recognition in micron-scale droplets, we have demonstrated the hierarchical assembly of 

amphiphilic block copolymers to form supramolecular microcapsules. The resultant 

microcapsules are monodisperse and offer good multi-encapsulation efficiency with synergistic 

release via the supramolecular cross-links. The hierarchical structure further allows for both 

hydrophilic and hydrophobic domains, enabling simultaneous carriage of incompatible cargos 

with Nile Red and FITC-dextran. Moreover, we demonstrate that the CB[8] supramolecular 

cross-link can be used to both disassemble the microcapsule under mild conditions (upon 

additional of a competitive guest) and to tune the properties of the microcapsule skin with UV-

controlled porosity.  

The high degree of customization enabled by our bottom-up hierarchical approach, 

combined with the simplicity of microdroplet preparation make this a powerful and flexible 

system with many applications in e.g homecare and cosmetic products e.g. the light-controlled 

cargo release behaviour can be potentially applied to delivery UV-resistant compounds in 

skincare products. The hierarchical assembly in this study is focused on the design and proof-of-

concept application of the fabrication method and the triggering mechanism, but we anticipate 
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further development of the CB[8] supramolecular system in droplet-based microfludics will 

rapidly lead to exploitable applications. 

 

EXPERIMENTAL SECTION 

Materials 

Methyl methacrylate, hydroxyethyl methacrylate, N-vinylpyrrolidone and acrylic acid 

monomers were purchased from Sigma-Aldrich and were passed through a column of silica gel 

and purged with high purity nitrogen for 1 hour prior to use. Nile Red (analytical standard), 4-

cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid, and 2-butanone (HPLC grade), 

fluorescein isothiocyanate–labelled dextran (FITC-dextran),  and 1-adamantylamine (ADA) were 

purchased from Sigma-Aldrich. Styrenic monomer bearing methyl viologen moieties (MV-

styrene), azobenzene acrylate monomer and cucubit[8]uril (CB[8]) were synthesized as 

previously reported.
68-69

 Solvents and reagents were used without further purification unless 

otherwise stated. All aqueous solutions were made in deionized water treated with a Milli-Q
TM

 

reagent system with a resistivity of 18.2 MΩ/cm at 25 °C. 

Characterization 

1
H NMR spectra (400 MHz) were recorded using a Bruker Avance QNP 400 Ultrashield 

spectrometer, equipped with a 5-mm BBO ATM probe with a z-gradient. Chemical shifts are 

recorded in ppm (δ) in D2O with the internal reference set to 4.67. Weight average molecular 

weight (Mw), number average molecular weight (Mn) and polydispersity (Mw/Mn) were obtained 

by aqueous or tetrahydrofuran (THF) GPC. The aqueous GPC setup consisted of a Shodex 
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OHpak SB column, connected in series with a Shimadzu SPD-M20A prominence diode array 

detector, a Wyatt DAWN HELEOS multi-angle light scattering detector and a Wyatt Optilab 

rEX refractive index detector. The THF GPC setup consisted of two 30 cm PLgel Mixed-C 

columns in series, eluted using THF and calibrated against a series of twelve near-monodisperse 

poly(methyl methacrylate) standards (Mp from 690 to 1,944,000 g.mol
-1

). The polymers were 

analysed in THF at a concentration of 5.0 mg/mL. All calibrations and analysis were performed 

at 35 ºC and a flow rate of 1 mL/min. Photoluminescence (PL) emission spectra of FITC-dextran 

and Nile Red were obtained using a Varian Cary Eclipse fluorescence spectrophotometer. 

Transmission electron microscopy (TEM) characterisation was carried out by a FEI Philips 

Tecnai 20 TEM under an accelerating voltage of 80 kV. Size distribution of P1 micelles were 

performed by dynamic light scattering (DLS) with Malvern Zeta sizer NS90 instrument. Images 

of microdroplets formation were obtained using a Phantom v7.2 camera attached to an Olympus 

IX71 inverted microscope. Microscopic images and fluorescence images were obtained using an 

Olympus IX81 inverted optical microscope coupled with a camera of Andor Technology 

EMCCD iXonEM+ DU 897. To image the fluorescence of FITC-dextran, a mercury lamp was 

installed for wide-spectrum illumination with ‘FITC’ filters and dichroics fitted to separate the 

fluorescence excitation and emission light. Scanning electron microscopy (SEM) measurements 

were made and images recorded using a Leo 1530 variable pressure SEM with InLens detector. 

Synthesis of poly(methyl methacrylate)-block-poly(acrylic acid) containing azobenzene 

pendant  (P1) 

Amphiphilic diblock polymer poly(methyl methacrylate)-block-poly(acrylic acid) 

containing azobenzene guest  was synthesised via two-step reversible addition-fragmentation 
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chain transfer (RAFT) polymerization using the unmodified chain transfer agent 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDTPA). 

Step 1: To a two-necked round bottom flask were added CPTPA (201 mg, 0.5 mmol, 1 eq.) 

and methyl methacrylate (2.5 g, 25 mmol, 50 eq.) in butanone (8 mL). Oxygen was removed by 

bubbling argon through the solution for 20 mins, followed by the subsequent addition of 4, 4-

azobis(4-cyanovaleric acid) (ACPA, 21 mg, 0.075 mmol, 0.15 eq.). The flask was then immersed 

in a preheated oil bath (65 ºC) and the solution stirred at 400 rpm for 24 hours. The resultant 

polymer was precipitated into cold hexane and dried under vacuum. The formed polymer was 

characterised to give Mw = 4150 Da, PDI = 1.1 from GPC, methyl methacrylateconversion = 83% 

from 
1
H NMR spectroscopy.  

Step 2: To a two-necked round bottom flask were added poly(methyl methacrylate) from 

step 1 (400 mg, 0.1 mmol, 1 eq.), acrylic acid (720 mg, 10 mmol, 100 eq.) and azobenzene 

acrylate monomer (200 mg, 0.5 mmol, 5 eq.) in butanone (4 mL). Oxygen was removed by 

bubbling argon through the solution for 20 mins, followed by the subsequent addition of ACPA 

(7 mg, 0.025 mmol, 0.25 eq.). The flask was then immersed in a preheated oil bath (70 ºC) and 

the solution stirred at 400 rpm for 24 hours. The resultant polymer was precipitated into cold 

hexane and dried under vacuum. The formed polymer was characterized to give Mw = 16 kDa, 

PDI = 1.3 from tetrahydrofuran (THF) GPC, [methyl methacrylate]:[acrylic acid]:[azobenzene] = 

40:62:4.8 from 
1
H NMR (Figure S1, supporting information). 
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Synthesis of poly(N-vinylpyrrolidone)-co-poly(hydroxyethyl methacrylate)-co-poly(MV- 

styrene) (P2) 

Poly(N-vinylpyrrolidone)-co-poly(hydroxyethyl methacrylate)-co-poly(MV-styrene) was 

synthesised via free radical polymerization. To a two-necked round bottom flask were added N-

vinylpyrrolidone (450 mg, 4 mmol, 80 eq.), hydroxyethyl methacrylate (2.6 g, 20 mmol, 400 eq.) 

and MV styrene monomer (0.9 g, 2 mmol, 40 eq.) in methanol/water (v:v = 50:50, 10 mL). 

Oxygen was removed by bubbling argon through the solutions for 20 mins, followed by the 

subsequent addition of ACPA (14 mg, 0.05 mmol, 1 eq.). The flask was immersed in a preheated 

oil bath (70 ºC) and the solution stirred at 400 rpm for 24 hours. The polymer was precipitated 

into cold hexane and finally dried in vacuo at 50 ºC. The resultant polymer was dialysed in water 

through a MWCO 6,000-8,000 membrane and freeze dried. The formed polymer was 

characterised to give Mw = 27 kDa, PDI = 1.4 from aqueous GPC, [hydroxyethyl 

methacrylate]:[N-vinylpyrrolidone]:[MV]= 100: 22:11 from 
1
H NMR spectroscopy (Figure S2, 

supporting information). 

Self-assembly of P1 for micelles 

A typical procedure for the preparation of micelles dispersions is as follows: 4 mg of 

amphiphilic diblock copolymer P1 was dissolved in 3 mL of THF. Under vigorous stirring, 10 

mL of deionized water was then slowly added. After the addition was complete, the micellar 

solution was further stirred for 24 h, upon which the THF had fully evaporated.  

To form Nile Red-loaded P1 micelles, first 0.5 mL of Nile Red solution (1.5×10
-3

 mg/ml in 

THF) was added to 3 mL THF containing amphiphilic diblock copolymer P1 (4 mg). Under 

vigorous stirring, 10 mL of deionized water was then slowly added. After the addition was 
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complete, the micellar solution was further stirred for 24 h, upon which the THF had fully 

evaporated. 

Supramolecular-assembly of micelles in microfluidic droplets 

The flow-focusing poly(dimethylsiloxane) microfluidic device was produced via soft 

lithography as previously described,
52

 with three inlets and one outlet. The depth of microfluidic 

channel was 50 μm and the nozzle was 40 μm wide. To generate water-in-oil microdroplets, 

three different liquids were injected into the three inlets, by three syringe pumps (PHD, Harvard 

Apparatus) with controlled flow rates. Flourinert FC-40 (3M) containing a 3 wt % fluorous 

surfactant (XL-01-171, Sphere Fluidics Ltd) and 1.5 wt % amine-Krytox
53

 (Sphere Fluidics Ltd) 

was used as the continuous phase. The first discontinuous aqueous phase comprised P1 micelles 

dispersed in water, and the second discontinuous phase was a solution of P2 and CB[8]. The 

continuous phase and both discontinuous phases were loaded into three 1 mL syringes, before 

connecting to the microfluidic chip. Syringes with needles were mounted on syringe pumps and 

fitted with polyethylene tubing, while the other end of the tubing was inserted into the 

appropriate inlets of a microfluidic chip. Microdroplets formation was initiated as Flourinert FC-

40 was first pumped into the device at the rate of 200 μL/h to fill the appropriate channels. Each 

aqueous dispersed phase was then pumped into the device at 50 μL/h. In a typical experiment, 

the final concentration of MV, azobenzene, and CB[8] was 15 μM. After formation, 

microdroplets were either collected in a PDMS reservoir downstream or transferred to a glass 

bottom dish. Upon collection, droplets were allowed to dehydrate over 5 hours for the complete 

formation of isolated microcapsules. After drying on a glass slide, the prepared microcapsules 

were washed with Novec HFE-7100 (3M) three times to remove the residual surfactants.  
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To generate FITC-dextran loaded microcapsules, FITC-dextran (500 kDa, 250 kDa, or 150 

kDa) was directly mixed with the aqueous P2 and CB[8] solution and then pumped into the 

microfluidic device as above. The final concentration of FITC-dextran within the microdroplet 

was 0.25 mg/mL. 

Rehydration of supramolecular microcapsules and subsequent release of cargo 

To rehydrate the FITC-dextran loaded hierarchical microcapsules, the glass slide was 

mounted on to a fluorescence microscope (Olympus IX81) and 50 µL of water added to the 

microcapsule-coated region. The 5 cycles of dehydration/rehydration were tested with a sample 

of 500 kDa FITC-dextran loaded microcapsules and the period of each cycle was 1 hour.  

The disassembly of FITC-dextran/Nile Red dual-loaded hierarchical microcapsules and 

their triggered release behaviour were tested using an aqueous solution of ADA (50µL, 1 mM). 

The ADA solution was applied over the dried microcapsules and optical and fluorescence images 

were collected after 3 minutes rehydration. Optical and fluorescent images were taken by 

Olympus IX81 microscope under 40x objective. 

To investigate photochemical disassembly, optical and fluorescent images were taken by 

Olympus IX81 microscope under 40x objective. 500 kDa FITC-dextran loaded microcapsules 

were rehydrated in water and then exposed to a focused UV light beam (30 s, λmax = 377 nm). 

The UV light was generated from a 100 W mercury lamp (365 nm, USH-1030L, USHIO Inc.), 

focused through a 40x objective and the DAPI-5060COMF-ZERO filter set (Semrock).  

To quantitatively measure the release of FITC-dextran and Nile Red, microfluidic droplets 

were collected for 6 hours into a 2 mL vial. After evaporation overnight of the oil and aqueous 
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phases, the prepared microcapsules within the vial were hydrated in water (800 µL) to measure 

the fluorescence spectrum of any released cargo. The photochemical disassembly of the 

microcapsules was triggered by exposure to a UV light source (LZC-ORG photo-reactor with 

377/50 nm filter). 
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