76 research outputs found

    Interleukin-17 is a negative regulator of established allergic asthma

    Get PDF
    T helper (Th)17 cells producing interleukin (IL)-17 play a role in autoimmune and allergic inflammation. Here, we show that IL-23 induces IL-17 in the lung and IL-17 is required during antigen sensitization to develop allergic asthma, as shown in IL-17R–deficient mice. Since IL-17 expression increased further upon antigen challenge, we addressed its function in the effector phase. Most strikingly, neutralization of IL-17 augmented the allergic response in sensitized mice. Conversely, exogenous IL-17 reduced pulmonary eosinophil recruitment and bronchial hyperreactivity, demonstrating a novel regulatory role of IL-17. Mechanistically, IL-17 down modulated eosinophil-chemokine eotaxin (CCL11) and thymus- and activation-regulated chemokine/CCL17 (TARC) in lungs in vivo and ex vivo upon antigen restimulation. In vitro, IL-17 reduced TARC production in dendritic cells (DCs)—the major source of TARC—and antigen uptake by DCs and IL-5 and IL-13 production in regional lymph nodes. Furthermore, IL-17 is regulated in an IL-4–dependent manner since mice deficient for IL-4Rα signaling showed a marked increase in IL-17 concentration with inhibited eosinophil recruitment. Therefore, endogenous IL-17 is controlled by IL-4 and has a dual role. Although it is essential during antigen sensitization to establish allergic asthma, in sensitized mice IL-17 attenuates the allergic response by inhibiting DCs and chemokine synthesis

    Discordance in cathepsin B and cystatin C expressions in bronchoalveolar fluids between murine bleomycin-induced fibrosis and human idiopathic fibrosis

    Get PDF
    International audienceAbstractThe activity of cysteine cathepsin B increased markedly in lung homogenates and in bronchoalveolar lavage fluids (BALF) of the mouse model of bleomycin-induced lung fibrosis after 14 days of challenge. In contrast the level of the cysteine cathepsin inhibitor cystatin C was unaffected in BALF of wild-type and cathepsin B-deficient mice. Therefore, murine cystatin C is not a reliable marker of fibrosis during bleomycin-induced lung fibrosis. Current data are in sharp contrast to previous analysis carried on human BALF from patients with idiopathic pulmonary fibrosis, for which the level of cathepsin B remained unchanged while cystatin C was significantly increased

    P2X7 Receptor Promotes Mouse Mammary Cancer Cell Invasiveness and Tumour Progression, and Is a Target for Anticancer Treatment

    Get PDF
    The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment

    Blockade of IL-33R/ST2 Signaling Attenuates Toxoplasma gondii Ileitis Depending on IL-22 Expression

    Get PDF
    Oral T. gondii infection (30 cysts of 76K strain) induces acute lethal ileitis in sensitive C57BL/6 (B6) mice with increased expression of IL-33 and its receptor ST2 in the ileum. Here we show that IL-33 is involved in ileitis, since absence of IL-33R/ST2 attenuated neutrophilic inflammation and Th1 cytokines upon T. gondii infection with enhanced survival. Blockade of ST2 by neutralizing ST2 antibody in B6 mice conferred partial protection, while rmIL-33 aggravated ileitis. Since IL-22 expression further increased in absence of ST2, we blocked IL-22 by neutralizing antibody, which abrogated protection from acute ileitis in ST2 deficient mice. In conclusion, severe lethal ileitis induced by oral T. gondii infection is attenuated by blockade of ST2 signaling and may be mediated in part by endogenous IL-22

    IL-1 and IL-23 Mediate Early IL-17A Production in Pulmonary Inflammation Leading to Late Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1ÎČ expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1ÎČ-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORÎłt(+) γΎ T cells and to a lesser extent by CD4αÎČ(+) T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-ÎČ1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1ÎČ-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1ÎČ driven lung pathology

    Lung inflammation and interstitial fibrosis by targeted alveolar epithelial type I cell death

    Get PDF
    IntroductionThe pathogenesis of chronic lung diseases is multifaceted with a major role of recurrent micro-injuries of the epithelium. While several reports clearly indicated a prominent role for surfactant-producing alveolar epithelial type 2 (AT2) cells, the contribution of gas exchange-permissive alveolar epithelial type 1 (AT1) cells has not been addressed yet. Here, we investigated whether repeated injury of AT1 cells leads to inflammation and interstitial fibrosis.MethodsWe chose an inducible model of AT1 cell depletion following local diphtheria toxin (DT) administration using an iDTR flox/flox (idTRfl/fl) X Aquaporin 5CRE (Aqp5CRE) transgenic mouse strain.ResultsWe investigated repeated doses and intervals of DT to induce cell death of AT1 cells causing inflammation and interstitial fibrosis. We found that repeated DT administrations at 1ng in iDTRfl/fl X Aqp5CRE mice cause AT1 cell death leading to inflammation, increased tissue repair markers and interstitial pulmonary fibrosis.DiscussionTogether, we demonstrate that depletion of AT1 cells using repeated injury represents a novel approach to investigate chronic lung inflammatory diseases and to identify new therapeutic targets

    NLRP6 controls pulmonary inflammation from cigarette smoke in a gut microbiota-dependent manner

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host–microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation

    Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives

    Get PDF
    P2X7 is an intriguing ionotropic receptor for which the activation by extracellular ATP induces rapid inward cationic currents and intracellular signalling pathways associated with numerous physiological processes such as the induction of the inflammatory cascade, the survival and proliferation of cells. In contrast, long-term stimulation of P2X7 is generally associated with membrane permeabilisation and cell death. Recently, P2X7 has attracted great attention in the cancer field, and particularly in the neoplastic transformation and the progression of solid tumours. A growing number of studies were published; however they often appeared contradictory in their results and conclusions. As such, the involvement of P2X7 in the oncogenic process remains unclear so far. The present review aims to discuss the current knowledge and hypotheses on the involvement of the P2X7 receptor in the development and progression of solid tumours, and highlight the different aspects that require further clarification in order to decipher whether P2X7 could be considered as a cancer biomarker or as a target for pharmacological intervention. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers

    Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis

    No full text
    International audiencePyroptosis and intrinsic apoptosis are two forms of regulated cell death driven by active caspases where plasma membrane permeabilization is induced by gasdermin pores. Caspase-1 induces gasdermin D pore formation during pyroptosis, whereas caspase-3 promotes gasdermin E pore formation during apoptosis. These two types of cell death are accompanied by mitochondrial outer membrane permeabilization due to BAK/BAX pore formation in the external membrane of mitochondria, and to some extent, this complex also affects the inner mitochondrial membrane facilitating mitochondrial DNA relocalization from the matrix to the cytosol. However, the detailed mechanism responsible for this process has not been investigated. Herein, we reported that gasdermin processing is required to induce mitochondrial DNA release from cells during pyroptosis and apoptosis. Gasdermin targeted at the plasma membrane promotes a fast mitochondrial collapse along with the initial accumulation of mitochondrial DNA in the cytosol and then facilitates the DNA's release from the cell when the plasma membrane ruptures. These findings demonstrate that gasdermin action has a critical effect on the plasma membrane and facilitates the release of mitochondrial DNA as a damage-associated molecular pattern
    • 

    corecore