7 research outputs found

    Spatio-temporal coupling of attosecond pulses

    Get PDF
    The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme ultraviolet range and bandwidths exceeding tens of eV. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely-used approximation consisting in writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argumentation uses a simple analytical model based on Gaussian optics, numerical propagation calculations and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high quality focusing while retaining the broadband/ultrashort characteristics of the radiation

    Two-Photon Double Ionization of Neon Studied with Intense Attosecond Pulse Trains

    No full text
    We focused an intense attosecond pulse train into a neon gas target and observed Ne2+ resulting from two-photon double ionization. By modifying the photon spectrum we find that the process is dominated by the sequential ionization via the Ne+ ion

    Dissociation dynamics of the diamondoid adamantane upon photoionization by XUV femtosecond pulses

    No full text
    International audienceAbstract This work presents a photodissociation study of the diamondoid adamantane using extreme ultraviolet femtosecond pulses. The fragmentation dynamics of the dication is unraveled by the use of advanced ion and electron spectroscopy giving access to the dissociation channels as well as their energetics. To get insight into the fragmentation dynamics, we use a theoretical approach combining potential energy surface determination, statistical fragmentation methods and molecular dynamics simulations. We demonstrate that the dissociation dynamics of adamantane dications takes place in a two-step process: barrierless cage opening followed by Coulomb repulsion-driven fragmentation

    Simultaneous remote monitoring of atmospheric methane and water vapor using an integrated path DIAL instrument based on a widely tunable optical parametric source

    No full text
    International audienceWe report on the remote sensing capability of an integrated path differential absorption lidar (IPDIAL) instrument, for multi-species gas detection and monitoring in the 3.3-3.7 µm range. This instrument is based on an optical parametric source composed of a master oscillator-power amplifier scheme--whose core building block is a nested cavity optical parametric oscillator--emitting up to 10 µJ at 3.3 µm. Optical pumping is realized with an innovative single-frequency, 2-kHz repetition rate, nanosecond microchip laser, amplified up to 200 µJ per pulse in a single-crystal fiber amplifier. Simultaneous monitoring of mean atmospheric water vapor and methane concentrations was performed over several days by use of a topographic target, and water vapor concentration measurements show good agreement compared with an in situ hygrometer measurement. Performances of the IPDIAL instrument are assessed in terms of concentration measurement uncertainties and maximum remote achievable range

    Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics

    Get PDF
    We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to λ/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG). © 2019 Optical Society of America

    3.3 - 3.7µm OPO/OPA optical source for multi-species 200m range Integrated Path DIfferential Absorption Lidar

    No full text
    International audienceWe report on an integrated path Differential Absorption Lidar instrument based on a 3.3 - 3.7 µm range transmitter for multi-species atmospheric gas detection and quantification. Detection demonstration for atmospheric methane and water vapor is realized

    Micro-Focusing of Broadband High-Order Harmonic Radiation by a Double Toroidal Mirror

    Get PDF
    We present an optical system based on two toroidal mirrors in a Wolter configuration to focus broadband extreme ultraviolet (XUV) radiation. Optimization of the focusing optics alignment is carried out with the aid of an XUV wavefront sensor. Back-propagation of the optimized wavefront to the focus yields a focal spot of 3.6 × 4.0 µm2 full width at half maximum, which is consistent with ray-tracing simulations that predict a minimum size of 3.0 × 3.2 µm2. This work is important for optimizing the intensity of focused high-order harmonics in order to reach the nonlinear interaction regime
    corecore