128 research outputs found

    Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly

    Get PDF
    To enhance the carbon dioxide (CO2) uptake of metal-organic frameworks (MOFs), amine functionalization of their pore surfaces has been studied extensively. In general, amine-functionalized MOFs have been synthesized via post-synthetic modifications. Herein, we introduce a one-step construction of a MOF ([(NiLethylamine)(BPDC)]=MOFNH2; [NiLethylamine]2+=[Ni(C12H32N8)]2+; BPDC2-=4,4???-biphenyldicarboxylate) possessing covalently tethered alkylamine groups without post-synthetic modification. Two-amine groups per metal centre were introduced by this method. MOFNH2 showed enhanced CO2 uptake at elevated temperatures, attributed to active chemical interactions between the amine groups and the CO2 molecules. Due to the narrow channels of MOFNH2, the accessibility to the channel of CO2 is the limiting factor in its sorption behaviour. In this context, only crystal size reduction of MOFNH2 led to much faster and greater CO2 uptake at low pressures.open

    Tandem Mass Spectrometry Measurement of the Collision Products of Carbamate Anions Derived from CO2 Capture Sorbents: Paving the Way for Accurate Quantitation

    Get PDF
    The reaction between CO2 and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d4-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN−, NCO− and facile neutral losses of CO2 and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (−CO2, 44 mass units), loss of 46 mass units and the fragments NCO− (m/z 42) and CN− (m/z 26). We also report low energy CID results for the dicarbamate dianion (−O2CNHC2H4NHCO2−) commonly encountered in CO2 capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO2 capture products could lead to dynamic operational tuning of CO2 capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    Arabin cervical pessary for prevention of preterm birth in cases of twin-to-twin transfusion syndrome treated by fetoscopic LASER coagulation: the PECEP LASER randomised controlled trial

    Get PDF
    Abstract Background Fetoscopic LASER coagulation of the placental anastomoses has changed the prognosis of twin-twin transfusion syndrome. However, the prematurity rate in this cohort remains very high. To date, strategies proposed to decrease the prematurity rate have shown inconclusive, if not unfavourable results. Methods This is a randomised controlled trial to investigate whether a prophylactic cervical pessary will lower the incidence of preterm delivery in cases of twin-twin transfusion syndrome requiring fetoscopic LASER coagulation. Women eligible for the study will be randomised after surgery and allocated to either pessary or expectant management. The pessary will be left in place until 37 completed weeks or earlier if delivery occurs. The primary outcome is delivery before 32 completed weeks. Secondary outcomes are a composite of adverse neonatal outcome, fetal and neonatal death, maternal complications, preterm rupture of membranes and hospitalisation for threatened preterm labour. 352 women will be included in order to decrease the rate of preterm delivery before 32 weeks’ gestation from 40% to 26% with an alpha-error of 0.05 and 80% power. Discussion The trial aims at clarifying whether the cervical pessary prolongs the pregnancy in cases of twin-twin transfusion syndrome regardless of cervical length at the time of fetoscopy. Trial registration ClinicalTrials.gov Identifier: NCT01334489 . Registered 04 December 2011

    Vasovagal tonus index (VVTI) as an indirect assessment of remission status in canine multicentric lymphoma undergoing multi-drug chemotherapy

    Get PDF
    Vasovagal tonus index (VVTI) is an indirect measure of heart rate variability and may serve as a marker of disease severity. Higher heart rate variability has predicted lower tumour burden and improved survival in humans with various tumour types. The purpose of this pilot study was to evaluate VVTI as a biomarker of remission status in canine lymphoma. The primary hypothesis was that VVTI would be increased in dogs in remission compared to dogs out of remission. Twenty-seven dogs were prospectively enrolled if they had a diagnosis of intermediate to high-grade lymphoma and underwent multidrug chemotherapy. Serial electrocardiogram data were collected under standard conditions and relationships between VVTI, remission status and other clinical variables were evaluated. VVTI from dogs in remission (partial or complete) did not differ from dogs with fulminant lymphoma (naive or at time of relapse). Dogs in partial remission had higher VVTI than dogs in complete remission (p = 0.021). Higher baseline VVTI was associated with higher subsequent scores (p < 0.001). VVTI also correlated with anxiety level (p = 0.03). Based on this pilot study, VVTI did not hold any obvious promise as a useful clinical biomarker of remission status. Further investigation may better elucidate the clinical and prognostic utility of VVTI in dogs with lymphoma

    Stabilization of Scandium Terephthalate MOFs against Reversible Amorphization and Structural Phase Transition by Guest Uptake at Extreme Pressure

    Get PDF
    Previous high-pressure experiments have shown that pressure-transmitting fluids composed of small molecules can be forced inside the pores of metal organic framework materials, where they can cause phase transitions and amorphization and can even induce porosity in conventionally nonporous materials. Here we report a combined high-pressure diffraction and computational study of the structural response to methanol uptake at high pressure on a scandium terephthalate MOF (Sc2BDC3, BDC = 1,4-benzenedicarboxylate) and its nitro-functionalized derivative (Sc2(NO2–BDC)3) and compare it to direct compression behavior in a nonpenetrative hydrostatic fluid, Fluorinert-77. In Fluorinert-77, Sc2BDC3 displays amorphization above 0.1 GPa, reversible upon pressure release, whereas Sc2(NO2–BDC)3 undergoes a phase transition (C2/c to Fdd2) to a denser but topologically identical polymorph. In the presence of methanol, the reversible amorphization of Sc2BDC3 and the displacive phase transition of the nitro-form are completely inhibited (at least up to 3 GPa). Upon uptake of methanol on Sc2BDC3, the methanol molecules are found by diffraction to occupy two sites, with preferential relative filling of one site compared to the other: grand canonical Monte Carlo simulations support these experimental observations, and molecular dynamics simulations reveal the likely orientations of the methanol molecules, which are controlled at least in part by H-bonding interactions between guests. As well as revealing the atomistic origin of the stabilization of these MOFs against nonpenetrative hydrostatic fluids at high pressure, this study demonstrates a novel high-pressure approach to study adsorption within a porous framework as a function of increasing guest content, and so to determine the most energetically favorable adsorption sites

    3D-Printed Stationary Phases with Ordered Morphology: State of the Art and Future Development in Liquid Chromatography Chromatographia

    Get PDF
    corecore