334 research outputs found

    Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water

    Full text link
    We analyze numerically and experimentally the effect of the input pulse chirp on the nonlinear energy deposition from 5 μ5\ \muJ fs-pulses at 800800 nm to water. Numerical results are also shown for pulses at 400400 nm, where linear losses are minimized, and for different focusing geometries. Input chirp is found to have a big impact on the deposited energy and on the plasma distribution around focus, thus providing a simple and effective mechanism to tune the electron density and energy deposition. We identify three relevant ways in which plasma features may be tuned.Comment: 9 pages, 7 figure

    Propagating Pattern Selection and Causality Reconsidered

    No full text
    International audiencePattern selection, occurring when a nonuniform state of a nonlinear dissipative system propagates into an initially unstable, homogeneous basic state is reconsidered by application of the causality principle. In particular, the nonlinear marginal stability criterion that determines the selection of a nonlinear front solution is replaced by an exact general necessary condition that has never been considered before. The demonstration is based on the causal signaling problem derived in the context of plasma physics

    On the nature of spatiotemporal light bullets in bulk Kerr media

    Get PDF
    We present a detailed experimental investigation, which uncovers the nature of light bullets generated from self-focusing in a bulk dielectric medium with Kerr nonlinearity in the anomalous group velocity dispersion regime. By high dynamic range measurements of three-dimensional intensity profiles, we demonstrate that the light bullets consist of a sharply localized high-intensity core, which carries the self-compressed pulse and contains approximately 25% of the total energy, and a ring-shaped spatiotemporal periphery. Sub-diffractive propagation along with dispersive broadening of the light bullets in free space after they exit the nonlinear medium indicate a strong space-time coupling within the bullet. This finding is confirmed by measurements of spatiotemporal energy density flux that exhibits the same features as stationary, polychromatic Bessel beam, thus highlighting the physical nature of the light bullets

    Nonlinear photoionization of transparent solids: a nonperturbative theory obeying selection rules

    Full text link
    We provide a nonperturbative theory for photoionization of transparent solids. By applying a particular steepest-descent method, we derive analytical expressions for the photoionization rate within the two-band structure model, which consistently account for the selectionselection rulesrules related to the parity of the number of absorbed photons (oddodd or eveneven). We demonstrate the crucial role of the interference of the transition amplitudes (saddle-points), which in the semi-classical limit, can be interpreted in terms of interfering quantum trajectories. Keldysh's foundational work of laser physics [Sov. Phys. JETP 20, 1307 (1965)] disregarded this interference, resulting in the violation of selectionselection rulesrules. We provide an improved Keldysh photoionization theory and show its excellent agreement with measurements for the frequency dependence of the two-photon absorption and nonlinear refractive index coefficients in dielectrics

    X and Y waves in the spatiotemporal Kerr dynamics of a self-guided light beam

    Full text link
    The nonlinear stage of development of the spatiotemporal instability of the monochromatic Townes beam in a medium with self-focusing nonlinearity and normal dispersion is studied by analytical and numerical means. Small perturbations to the self-guided light beam are found to grow into two giant, splitting Y pulses featuring shock fronts on opposite sides. Each shocking pulse amplifies a co-propagating X wave, or dispersion- and diffraction-free linear wave mode of the medium, with super-broad spectrum.Comment: 9 pages, 9 figure

    Phase-Insensitive Scattering of Terahertz Radiation

    Get PDF
    The nonlinear interaction between Near-Infrared (NIR) and Terahertz pulses is principally investigated as a means for the detection of radiation in the hardly accessible THz spectral region. Most studies have targeted second-order nonlinear processes, given their higher efficiencies, and only a limited number have addressed third-order nonlinear interactions, mainly investigating four-wave mixing in air for broadband THz detection. We have studied the nonlinear interaction between THz and NIR pulses in solid-state media (specifically diamond), and we show how the former can be frequency-shifted up to UV frequencies by the scattering from the nonlinear polarisation induced by the latter. Such UV emission differs from the well-known electric-field-induced second harmonic (EFISH) one, as it is generated via a phase-insensitive scattering, rather than a sum- or difference-frequency four-wave-mixing process

    Light-filament dynamics and the spatiotemporal instability of the Townes profile

    Get PDF
    The origin of the spatiotemporal filament dynamics of ultrashort pulses in nonlinear media, including axial-conical emission coupling, temporal splitting, and X waves, is explained by the spatiotemporal instability of spatially localized nonlinear modes. Our experiments support this interpretation

    Filamentation in Kerr media from pulsed Bessel beams

    Get PDF
    In contrast with filamentation of ultrashort laser pulses with standard Gaussian beams in Kerr media, three different types of Bessel filaments are obtained in air or in water by focusing ultrashort laser pulses with an axicon. We thoroughly investigate the different regimes and show that the beam reshapes as a nonlinear Bessel beam which establishes a conical energy flux from the low intensity tails toward the high intensity peak. This flux efficiently sustains a high contrast long-distance propagation and easily generates a continuous plasma channel in air

    Effect of light polarization on plasma distribution and filament formation

    Full text link
    We show that, for 200 fs light pulses at 790 nm, the formation of filaments is strongly affected by the laser light polarization . Filamentation does not exist for a pure circularly polarized light, propagating in vacuum before focusing in air, while there is no difference for focusing the light in air or vacuum for linearly polarized light.Comment: 4pages 2 figure
    corecore