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The origin of the spatiotemporal filament dynamics of ultrashort pulses in nonlinear media, including
axial-conical emission coupling, temporal splitting, and X waves, is explained by the spatiotemporal instability
of spatially localized nonlinear modes. Our experiments support this interpretation.
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From optical pulses to Bose-Einstein condensates, from
plasma instabilities to hydrodynamical or optical shocks,
many nonlinear wave processes involve a dramatic increase
of intensity along with compression into a strongly localized
state, followed by relaxation into linear waves. In the case of
ultrashort optical pulses in nonlinear self-focusing media, the
dynamics generally develops in three dimensions �time and
two spatial dimensions�, but due to standard experimental
conditions, the compression stage is dominated by a spatial
self-focusing toward a strongly localized wave in space only.
In the subsequent filamentary and eventual relaxation re-
gimes an apparent stationarity hides a rich, fully spatiotem-
poral dynamics �1�. Temporal pulse splitting is accompanied
by the emission of new temporal frequencies �axial spectral
broadening�, and spatial frequencies �off-axis, or conical
emission�, organized into X-shaped patterns in Fourier space
�2,3�. A recent interpretation in terms of relaxation into mul-
tiple spatiotemporal X waves harmonizes the ultimate sta-
tionarity with some of these highly dynamic phenomena �4�.

In this Rapid Communication, we aim at clarifying the
mechanisms responsible for the onset of the full spatiotem-
poral dynamics in the filamentary regime. We build a unified
interpretation based on the spatiotemporal instability of
strongly localized waves in space, such as those formed upon
Kerr self-focusing �5�, and that points out a common origin
of temporal splitting, axial and conical emissions, and X
waves. As a minimal model, we study the temporal instabil-
ity with normal dispersion of the ground state of the cubic
nonlinear Schrödinger equation �NLSE� with two spatial di-
mensions, or Townes profile �TP� �6,7�, which mimics the
localized spatial profile generated at each refocusing event
within an ultrashort filament �8�. Our numerical calculation
of the unstable modes for all perturbation frequencies en-
ables us to show for the first time that the spatiotemporal
instability of a localized beam as the TP is featured by a
couple of Y-shaped unstable modes that split each other in
time, link axial and conical emission, and act as precursors
of X waves. A four-wave mixing-based reinterpretation of
the Y-shaped instability supports its generality for spatially
localized waves, and its application to interpret filament dy-
namics. Y-shaped unstable modes are observed at the initial
stage of filamentation in our simulations and experiments.

We consider the simplest, cubic NLSE with normal time
dispersion �9,10�:
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�k0��0� describing the dynamics of a cylindrically symmet-
ric wave-packet E=A�r , t ,z�exp�−i�0t+ ik0z� of carrier fre-
quency �0. In �1�, r is the radial coordinate in a plane trans-
verse to z, t�= t−k0�z, k0

�n�= �dnk��� /d�n��0
, with k��� the

propagation constant in the medium, n2�0 is the nonlinear
refractive index, and c is the speed of light in vacuum. We
also consider the monochromatic, stationary, and exponen-
tially localized solution A= I1/2a0���exp�i��� to �1�, where I
is the peak intensity, ��0.2055, and a0��� is the TP �see Fig.
1�a�� �7�. The scaled axial and radial coordinates are �
=kNLz and �= �kNLk0�1/2r, where kNL=�0n2I /c.

To perform the spatiotemporal instability analysis, we
also introduce the dimensionless time �= �kNL/k0��

1/2t� and
envelope a=A / I1/2 to rewrite �1� in the form
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FIG. 1. �Color online� �a� Normalized TP. �b� Real and imagi-
nary parts of the relevant complex eigenvalue. Dashed curve:
�2 /2+�. �c� Modulus of the spatiotemporal spectrum p̂��Q ,�� of
p�. The amplitudes for different � are arbitrarily chosen so that the
energy �0

	�p̂��2Q dQ is independent of �. �d� Thick solid and dashed
curves: Characterization of the spatiotemporal spectrum of the un-
stable perturbations p� and p−�� by the dominant radial frequencies
Qu,v. Dotted curve: maximum gain curve of the plane wave. Thin
solid and dashed curves: double-X spectrum.
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Following a standard procedure �11�, we consider the spa-
tially and temporally perturbed Townes beam

a = �a0��� + 
�u���e−i��+i�� + v����ei��−i����	ei��, �3�

where 
�1, and where ��0 is the absolute temporal fre-
quency shift �in units of �kNL/k0��

1/2� of the perturbation with
respect to the Townes frequency. Note that u and v� in �3� are
oppositely shifted by +� and −�. The perturbation �3� in the
NLSE �2� leads �up to the first order in 
� to
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where H= 1
2 �d2 /d�2+ �1/��d /d�+�2�−�+2a0

2���. If this ei-
genvalue problem for given � admits a solution �u ,v��0
with eigenvalue � with �I� Im �0, then the associated
perturbation �3� will grow exponentially with gain −�I, and
the TP will be unstable under perturbations at frequency �.
Note also that, if �� ,u ,v� is a solution of �4� with gain −�I,
then �−�� ,v� ,u�� is another solution with the same gain.
These solutions represent the two growing, physically dis-
cernible perturbations

p���,�� = �u���e−i��+i�R� + v����ei��−i�R��e−�I�+i��,

p−����,�� = �v����e−i��−i�R� + u���ei��+i�R��e−�I�+i��,

�5�

since u and v� are generally different and oppositely fre-
quency shifted in p� and p−��. Consequently, p� and p−��

may grow independently, depending on how the instability is
seeded.

We have solved the problem �4� numerically for each �
�0 by discretization of the differential operators on a � grid
of finite size much larger than the Townes range d1.5.
Increasing grid points and grid size allowed us to control the
accuracy of the results. For �=0, no complex eigenvalue is
found. This is in agreement with the fact that the TP does not
present exponential gain under spatial perturbations, but only
algebraic instability. For each ��0, only one pair of eigen-
values � and −�� with negative imaginary part appear �see
Fig. 1�b� for ��. The TP is then retrieved as modulationally
unstable under spatiotemporal perturbations �12�, with gain
−�I limited to ��1.5, but without an abrupt cutoff. Unlike
previous generalizations of Zakharov’s results on the insta-
bility of nonlinear waveguides �11�, our results are not lim-
ited to long wavelengths. The study of the unstable perturba-
tions presented below leads, moreover, to a unified
interpretation of the filament dynamics.

Figure 1�c� shows the results of the numerical calculation
of the Hänkel transform p��Q ,�� of the unstable perturba-
tion p��� ,�� at each frequency shift �, where Q is the radial
frequency �in units of �kNLk0�1/2�. The reflection of Fig. 1�c�
about �=0 yields the Hänkel transform p−���Q ,�� of
p−���� ,��. These Q-� spectra, or spatiotemporal spectra, are
particularly useful in experiments with ultrashort pulses.

Their measurement �in practice, measurement of the angu-
larly resolved spectrum, displaying angles and wavelengths�
is a powerful diagnostic from which many aspects of the
spatiotemporal dynamics can be inferred �2�. For the un-
stable perturbation p��Q ,�� of the TP, the branch u at +� is
peaked about Qu0 for all +�, and hence can be identified
with an axial emission at upshifted frequencies. The branch v
at −� presents instead a sharp maximum at increasing radial
frequency with detuning, whose location fits well to Qv
��2�, and can be identified with a conical emission at
downshifted frequencies. For p−���Q ,��, axial emission is
instead associated with downshifted frequencies and conical
emission with upshifted frequencies.

These features also follow from an asymptotic analysis.
Neglecting terms with a0

2 in �4� and H for �→	, the
problem �4� becomes uncoupled for u and v, and admits an
analytical solution. The bounded solutions for �→	 are
u�H0

�1���Qu+ i�u��� and v�H0
�1���Qv+ i�v���, where H0

�1� is
the Hänkel function of first class and zero order. The real
quantities Qu,v and �u,v are defined by

Qu + i�u = ��2 − 2� − 2�, Qv + i�v = ��2 − 2� + 2� ,

�6�

with the convention of taking square roots such that
�u,v�0. Using H0

�1��s���2/�s�exp�i�s−� /4�� for large �s�,
and ignoring constant factors and algebraical decay, u and v
are found to be dominated at large � by the damped oscillat-
ing behavior exp�−�u,v�+ iQu,v��, with radial frequencies
Qu,v. The thick curves in Fig. 1�d� represents dominant radial
frequencies Qu and Qv, obtained from �6�, versus their re-
spective frequency shifts, +� and −� for the perturbation p�

�solid curve� and −� and +� for the perturbation p−��

�dashed curve�. The dominant radial frequency Qu is close to
zero, while Qv is well described by Qv��2�, as obtained
above from the numerical evaluation.

Let us compare the spatiotemporal instabilities of the TP
and of the plane wave solution a=exp�i�� to the NLSE �9�.
The problem �4� holds in the latter case if a0 and � are
replaced by unity. The functions u and v associated with the
most unstable perturbations p� and p−�� at each frequency �
are two plane waves with the identical transverse wave num-
bers Qu=Qv=��2+2, with �-independent gain −�I=1. The
spectra p��Q ,�� and p−���Q ,�� are then characterized by
two identical hyperbolas, depicted in Fig. 1�d� as a dotted
curve �see Ref. �9� for more details�.

To summarize, if � denotes the physical �positive or
negative� temporal frequency shift, and K� the physical ra-
dial frequency, the instability spectrum of the plane wave is
characterized by the hyperbola K�=�2k0�kNL+k0��

2 /2� for
arbitrary �, and the instability spectrum of the TP by the two
Y-shaped curves K���−�2k0k0�� if �0,0 if ��0� �and
its reflection about �=0�, limited to ����1.5�kNL/k0�. Note
the �2-fold slope of the Y arm in comparison with those of
the hyperbola. These Y-shaped spectra point out a common
origin for axial and conical emission. Typical filament spec-
tra, displaying on-axis and X-shaped off-axis radiation, are
reinterpreted here as originating from two superimposed
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Y-shaped spectra, each one linking axial to conical emission
at opposite frequency bands.

The Y-shaped instability admits a simple interpretation
and generalization as a four-wave-mixing interaction driven
by the Kerr nonlinearity. Consider two intense, identical
pump waves of frequency �=0 propagating along the z di-
rection, and amplifying two weak, noncollinear plane waves,
u and v, at frequencies ±�. The axial projection of the wave
vector of each wave is expressed by kz=k0+k0��+k0��

2 /2
−K�

2 /2k0+�kNL up to second order in dispersion �as in the
NLSE �1��. The last two terms account for axial wave vector
shortening due to noncollinearity �for u and v� and lengthen-
ing due to either self-phase �for the pump p� or cross-phase
modulation �for u and v�. If the pumps are plane waves,
the conditions of axial and transverse phase matching
�kz,u+kz,v=2kz,p and K�,u

2 =K�,v
2 �K�

2 �, and that the cross-
phase-modulation wave vector shift is twice the self-phase-
modulation shift �13� ��kNL,u=�kNL,v=2�kNL,p=2kNL�, lead
immediately to the hyperbolic curve K�

=�2k0�kNL+k0��
2 /2�.

For transversally localized pump waves, however, effi-
cient amplification is possible with transverse mismatch such
that �K�,u−K�,v�� /d �14�, where d1.5/ �kNLk0�1/2 is the
width of the TP. We add here the hypothesis that, owing to
pump localization, plane waves collinear to the pump are
preferentially amplified. We then take u, e.g., as collinear
�K�,u�0�, with �kNL,u=2�kNL,p=2�kNL. Axial phase
matching is then seen to require v to be noncollinear
�K�,v�0�. It is then reasonable to take �kNL,v�0 for its
cross-phase modulation, �4� since v does not remain in the
localized interaction area of the TP. With these assumptions,
the sole condition of axial phase matching �kz,u+kz,v=2kz,p�
leads to the Y arm K�,v�−�2k0k0��. Axial phase matching
is then responsible for axial-conical coupling, amplification
in this configuration being possible due to the transverse lo-
calization of the pump. Also, limitation of the gain band-
width is a consequence of the maximum allowed transverse
mismatch: if K�,u�0, then �K�,v��� /d, which is satisfied
for �� � �1.5�kNL/k0�.

The independence of the four-wave-mixing analysis on
the particular localized profile stresses the generality of the
Y-based time-to-space coupling mechanism, which is ex-
pected to be triggered when an intense wave remains tightly
focused over a distance sufficient for a significant energy to
be transferred to the phase-matched frequencies. Pulse tem-
poral splitting is also accounted for by this mechanism. If the
perturbation p�, e.g., is seeded coherently at different fre-
quencies �, its growth leads to the formation of a pulse.
Note that �R fits well to �2 /2+� around the values of �
where the gain takes higher values �dashed curve in
Fig. 1�b��. The axial wave vector shift �R+� of the branch u
of the perturbation p� in �5� is then approximated by
�2 /2+2�, and the axial wave vector shift −�R+� of the
branch v by −�2 /2. The wave-mixing analysis yields the
same values, which in physical units read kz,u�k0+k0��
+k0��

2 /2+2�kNL �for ��0�, and kz,v�k0+k0��−k0��
2 /2

�for �0�. This means that the axial part of the Y wave
experiences the normal dispersion of the material, and the
conical part the opposite anomalous dispersion as an effect

of its angular dispersion. Consequently, the �inverse� group
velocities of the axial part, vg

−1=dkz,u /d� evaluated at posi-
tive �, and of the conical part, vg

−1=dkz,v /d� evaluated at
negative �, are identical and equal to k0�+k0� ���. The Y wave
then propagates as a whole at a well-defined group velocity.
For p−�� or a reflected Y wave, the group velocity is instead
k0�−k0����, and the group velocity mismatch between the two
Y waves is 2k0����. At the stage of well-developed instability,
the spectrum will exhibit sidebands at the maximum gain
frequencies ����0.4�kNL/k0��

1/2, and hence the group veloc-
ity mismatch approaches 0.8�kNLk0��

1/2=0.8��0k0�n2I /c�1/2, in
agreement with the dependence on pump intensity and ma-
terial properties in filamentation experiments �2�.

It follows from our analysis that the onset of downshifted
axial emission must be accompanied by upshifted conical
emission, and vice versa, and that these two events may oc-
cur independently. Our simulations and experiments support
this interpretation. First, we perturbed asymmetrically a TP
by making it pulsed �i.e., nonmonochromatic� with unequal
durations in its leading and trailing parts �dimensionless du-
rations ��=0.87 and 29�. This perturbation, however, does
not break the initial symmetry about �=0 of the spectral
intensity in the Q-� plane. Propagation under the NLSE �1�
accounts for dispersion and nonuniform spatial dynamics at
different slices of the pulse, and results in an asymmetric
spectrum, which, subtracted from the input one �to visualize
the newly generated frequencies�, yields the Y-shaped spec-
trum of Fig. 2�a� �at �=7.6�, with the off-axis tail fitting to
the expected slope �2 �thick line�.

Y-shaped spectra are also formed at the earlier stage of
filamentation. We simulated in real-world variables the fila-
mentation in water of an input �z=0 cm� Gaussian pulse of
200 fs duration �full width at half maximum�, 76 �m Gauss-
ian width, and energy 2 �J �peak intensity I0

(a)

(b)

(c)

(d)

FIG. 2. �Color online� Simulated spatiotemporal spectra �in
logarithmic scale, 10 decades plotted� of �a� NLSE-propagated in-
put pulsed TP �see text�, with the input spectrum subtracted; �b�
filament in water at 1 mm beyond the collapse �see text�. �c�, �d�
Measured angularly resolved spectra of filaments in fused silica at
E=2 �c� and �d� 3 �J.
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�1011 W/cm2� at 527 nm carrier wave length. The material
parameters and propagation equation, which includes Kerr
nonlinearity, diffraction, dispersion at any order, nonlinear
losses, and plasma defocusing, are thoroughly explained in
Ref. �15�, where X-shaped spectra well beyond collapse were
investigated. Collapse is regularized by non-Kerr effects
from z=1.1 to 1.2 mm, where strong localization along with
nearly constant peak intensity I�7�1012 W/cm2 is ob-
served. At 1.2 cm �Fig. 2�b�� the spectrum displays half-axial
and half-conical emission with the slope �2k0k0�
�1.33 fs/�m �thick line�, while no particular spectral struc-
ture was observed at 1.1 cm. The growth of the Y-shaped
spectrum in about 1 mm is consistent with a characteristic
gain length �kNL��I��−1�0.5 mm estimated from the peak in-
tensity I in this region.

In the experiments, we used a 15-cm-long fused silica
sample as Kerr medium. 200-fs-long pulses at 527 nm deliv-
ered from a 10 Hz Nd:glass mode-locked and regeneratively
amplified laser �Twinkle, Light Conversion� were spatially
filtered and focused with a lens of 50 cm focal length. The
pulses then entered into the sample, whose input facet was
placed at 52 cm from the lens, and formed a single filament
for input energies E�2 �J. Single-shot, angularly resolved
spectra of the filament at the output facet were measured
with an imaging spectrometer and a charge-coupled device
camera, as described in detail in �2�. At 2 �J in fused silica,
the filament is formed just before the output facet of the
sample, the Y-shaped �blue axial, red conical� spectrum of
Fig. 2�c� then being observed. At 3 �J, the filament is
formed closer to the input facet. The double-Y spectrum of
Fig. 2�d� then corresponds to a longer filament path within
the sample. The faster growth of one of the two unstable
perturbations supposes some unbalancing in their seeds, aris-
ing, as expected, from the higher-order effects that arrest
collapse.

Extending our analysis, we may venture an explanation of
the fact that two X waves are commonly observed in fila-
ments at later stages of propagation �3,4�. Consider, within

the four-wave-mixing approach, the possible effects on the
instability spectrum of the strong temporal localization of the
pump, as may take place upon �possibly multiple� splitting.
For a spatially and temporally localized pump of central fre-
quency �=0, axial wave vector kz,p=k0+�kNL, and propa-
gating at a group velocity vg different from that of a plane
pulse at �=0 �as for a Y wave�, new plane waves u and v at
opposite frequencies ±� are expected to be preferentially
amplified if in addition to axial phase matching �kz,u+kz,v
=2kp�, the velocity of the group formed by u and v matches
the velocity of the pump �i.e., the inverse beating group ve-
locity verifies �kz,u−kz,v� /2���=1/vg�. These two conditions
yield the linear relation kz=k0+�kNL+� /vg for u �at ��0�
and for v �at �0�. Since the transversal and axial projec-
tions of the wave vector are related by K�=�2k0�k���−kz�
�in the paraxial approximation involved in the NLSE �1��,
where k���=k0+k0��+k0��

2 /2, we obtain K�

=�2k0��+��+k0��
2 /2�, which is the dispersion curve of a

frequency-gap X-wave mode �4,16� with �=−�kNL and �
=k0�−1/vg. If this process takes place for the two split-off
pulses with opposite group velocities, the two X waves of
Fig. 1�d�, the thin solid and dashed curves, are formed. On
nonlinearity relaxation ��kNL→0� at larger z, one branch of
each X wave is seen to pass through �K� ,��=0, as observed
�3,4�.

In conclusion, Y waves, emerging from the spatiotempo-
ral instability of spatially localized modes in Kerr dynamics,
constitute the missing link between axial and conical emis-
sion, and allow us to interpret temporal splitting and X-wave
formation. These results provide a unified view of ultrashort
pulse filamentation, and can find application to all nonlinear
waves involving subdimensional localization, such as ��2�

solitons, matter waves with anisotropic confinement, plasma
waves �17�, etc.
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