The nonlinear interaction between Near-Infrared (NIR) and Terahertz pulses is
principally investigated as a means for the detection of radiation in the
hardly accessible THz spectral region. Most studies have targeted second-order
nonlinear processes, given their higher efficiencies, and only a limited number
have addressed third-order nonlinear interactions, mainly investigating
four-wave mixing in air for broadband THz detection. We have studied the
nonlinear interaction between THz and NIR pulses in solid-state media
(specifically diamond), and we show how the former can be frequency-shifted up
to UV frequencies by the scattering from the nonlinear polarisation induced by
the latter. Such UV emission differs from the well-known electric-field-induced
second harmonic (EFISH) one, as it is generated via a phase-insensitive
scattering, rather than a sum- or difference-frequency four-wave-mixing
process