51 research outputs found

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intraindividual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa

    Genome-wide detection and characterization of positive selection in human populations

    Get PDF
    With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used ‘long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population: LARGE and DMD, both related to infection by the Lassa virus3, in West Africa; SLC24A5 and SLC45A2, both involved in skin pigmentation in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia

    Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls.

    Get PDF
    Determining whether potential causal variants for related diseases are shared can identify overlapping etiologies of multifactorial disorders. Colocalization methods disentangle shared and distinct causal variants. However, existing approaches require independent data sets. Here we extend two colocalization methods to allow for the shared-control design commonly used in comparison of genome-wide association study results across diseases. Our analysis of four autoimmune diseases--type 1 diabetes (T1D), rheumatoid arthritis, celiac disease and multiple sclerosis--identified 90 regions that were associated with at least one disease, 33 (37%) of which were associated with 2 or more disorders. Nevertheless, for 14 of these 33 shared regions, there was evidence that the causal variants differed. We identified new disease associations in 11 regions previously associated with one or more of the other 3 disorders. Four of eight T1D-specific regions contained known type 2 diabetes (T2D) candidate genes (COBL, GLIS3, RNLS and BCAR1), suggesting a shared cellular etiology.MF is funded by the Wellcome Trust (099772). CW and HG are funded by the Wellcome Trust (089989). This work was funded by the JDRF (9–2011–253), the Wellcome Trust (091157) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). ImmunoBase.org is supported by Eli Lilly and Company. We thank the UK Medical Research Council and Wellcome Trust for funding the collection of DNA for the British 1958 Birth Cohort (MRC grant G0000934, WT grant 068545/Z/02). DNA control samples were prepared and provided by S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton. Biotec Cluster M4, the Fidelity Biosciences Research Initiative, Research Foundation Flanders, Research Fund KU Leuven, the Belgian Charcot Foundation, Gemeinntzige Hertie Stiftung, University Zurich, the Danish MS Society, the Danish Council for Strategic Research, the Academy of Finland, the Sigrid Juselius Foundation, Helsinki University, the Italian MS Foundation, Fondazione Cariplo, the Italian Ministry of University and Research, the Torino Savings Bank Foundation, the Italian Ministry of Health, the Italian Institute of Experimental Neurology, the MS Association of Oslo, the Norwegian Research Council, the South–Eastern Norwegian Health Authorities, the Australian National Health and Medical Research Council, the Dutch MS Foundation and Kaiser Permanente. Marina Evangelou is thanked for motivating the investigation of the FASLG association.This is the author accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n7/full/ng.3330.html

    Pervasive Sharing of Genetic Effects in Autoimmune Disease

    Get PDF
    Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases, some of which are shared between two diseases. Along with epidemiological and clinical evidence, this suggests that some genetic risk factors may be shared across diseases—as is the case with alleles in the Major Histocompatibility Locus. In this work we evaluate the extent of this sharing for 107 immune disease-risk SNPs in seven diseases: celiac disease, Crohn's disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes. We have developed a novel statistic for Cross Phenotype Meta-Analysis (CPMA) which detects association of a SNP to multiple, but not necessarily all, phenotypes. With it, we find evidence that 47/107 (44%) immune-mediated disease risk SNPs are associated to multiple—but not all—immune-mediated diseases (SNP-wise PCPMA<0.01). We also show that distinct groups of interacting proteins are encoded near SNPs which predispose to the same subsets of diseases; we propose these as the mechanistic basis of shared disease risk. We are thus able to leverage genetic data across diseases to construct biological hypotheses about the underlying mechanism of pathogenesis

    Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers.

    Get PDF
    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 × 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.This research uses resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Human Genome Research Institute (NHGRI), the National Institute of Child Health and Human Development (NICHD) and JDRF and supported by grant U01 DK062418 from the US National Institutes of Health. Further support was provided by grants from the NIDDK (DK046635 and DK085678) to P.C. and by a joint JDRF and Wellcome Trust grant (WT061858/09115) to the Diabetes and Inflammation Laboratory at Cambridge University, which also received support from the NIHR Cambridge Biomedical Research Centre. ImmunoBase receives support from Eli Lilly and Company. C.W. and H.G. are funded by the Wellcome Trust (089989). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). We gratefully acknowledge the following groups and individuals who provided biological samples or data for this study. We obtained DNA samples from the British 1958 Birth Cohort collection, funded by the UK Medical Research Council and the Wellcome Trust. We acknowledge use of DNA samples from the NIHR Cambridge BioResource. We thank volunteers for their support and participation in the Cambridge BioResource and members of the Cambridge BioResource Scientific Advisory Board (SAB) and Management Committee for their support of our study. We acknowledge the NIHR Cambridge Biomedical Research Centre for funding. Access to Cambridge BioResource volunteers and to their data and samples are governed by the Cambridge BioResource SAB. Documents describing access arrangements and contact details are available at http://www.cambridgebioresource.org.uk/. We thank the Avon Longitudinal Study of Parents and Children laboratory in Bristol, UK, and the British 1958 Birth Cohort team, including S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton, for preparing and providing the control DNA samples. This study makes use of data generated by the Wellcome Trust Case Control Consortium, funded by Wellcome Trust award 076113; a full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk/.This is the author accepted manuscript. The final version is available via NPG at http://www.nature.com/ng/journal/v47/n4/full/ng.3245.html

    Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines

    Get PDF
    Lymphoblastoid cell lines (LCLs), originally collected as renewable sources of DNA, are now being used as a model system to study genotype–phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-individual variance—i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels) than to detectable eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro artifacts may reduce power and have the potential to create spurious association due to confounding

    Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology

    Get PDF
    Genome-wide association studies have uncovered hundreds of DNA changes associated with complex disease. The ultimate promise of these studies is the understanding of disease biology; this goal, however, is not easily achieved because each disease has yielded numerous associations, each one pointing to a region of the genome, rather than a specific causal mutation. Presumably, the causal variants affect components of common molecular processes, and a first step in understanding the disease biology perturbed in patients is to identify connections among regions associated to disease. Since it has been reported in numerous Mendelian diseases that protein products of causal genes tend to physically bind each other, we chose to approach this problem using known protein–protein interactions to test whether any of the products of genes in five complex trait-associated loci bind each other. We applied several permutation methods and find robustly significant connectivity within four of the traits. In Crohn's disease and rheumatoid arthritis, we are able to show that these genes are co-expressed and that other proteins emerging in the network are enriched for association to disease. These findings suggest that, for the complex traits studied here, associated loci contain variants that affect common molecular processes, rather than distinct mechanisms specific to each association.Massachusetts Institute of Technology (MIT IDEA2 Program)Harvard University. Biological and Biomedical Sciences ProgramEunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (NICHD RO1 grant HD055150-03)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (K08 NIH-NIAMS career development award (AR055688))National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (DK083756)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (DK086502)Denmark. Forskningsradet for Sundhed og SygdomCenter for the Study of Inflammatory Bowel Diseas

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe
    corecore