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Abstract

Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation
predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability
to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different
genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree
to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid
arthritis (RA) and Crohn’s disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated
loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation
approaches to show that these networks are more densely connected than chance expectation. To confirm biological
relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in
question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that
the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the
confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended
GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We
find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect
excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for
many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically
interact in a preferential manner, in line with observations in Mendelian disease.
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Introduction

Common genetic variants in over 150 genomic loci have now

been unequivocally associated to immune-mediated diseases by

genome-wide association studies (GWAS) [1–18]. It is presumed

that these associations represent perturbations to a common but

limited set of underlying molecular processes that modulate risk

to disease. The next challenge – and the great promise of human

genetics – is the identification of these disease-causing pathways

so they may be targeted for diagnostics and therapeutic

intervention.

In identifying such processes, there are difficulties in both (i)

identifying the specific genes at (and how they are molecularly

impacted by) each association and (ii) inferring disease-causing

mechanisms from the set of identified genes. Linkage disequilib-

rium blocks containing disease-associated SNPs can be hundreds

of kilobases in size, and some contain tens of genes to consider.

Genes are often informally implicated in pathogenesis by their
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proximity to the most associated marker, their biological

plausibility, or simply their being the only protein-coding gene

in the region. In reality, however, it is only a very small subset of

confirmed GWAS associations for which specific functional

variants have been proven experimentally.

More systematic approaches have been applied to connect

genes to a common process with the use of independent data, such

as Gene Set Enrichment Analysis (GSEA) and Gene Relationships

Across Implicated Loci (GRAIL) [1,19–21]. Both approaches

identify connections between genes based on descriptive categories

that outline the theorized underlying pathogenesis. However, these

concepts are often general, so that specific hypotheses and

molecular pathways can be difficult to define and are somewhat

limited to established knowledge bases.

Observations of interactions between the products of protein-

coding genes offer the most direct route to identifying pathogenic

processes. It has been shown in a number of Mendelian diseases that

genes causal of a particular phenotype tend to physically interact

[22–26]. This has been confirmed in the model organism C. elegans,

where RNAi knock-down of germline genes correlated highly with

their products interacting in yeast-two hybrid experiments [26]. A

classic example of a human Mendelian disease that recapitulates this

model is Fanconi Anemia (FA), an autosomal recessive disorder

linked to at least 13 loci, at least 8 of which function in a DNA repair

complex [22]. Protein-protein interaction (PPI) data has also been

used to formulate hypotheses about co-expressed genes as well as

cancer genes [27,28]. We note that previous attempts to use PPI

data to prioritize candidate genes in Mendelian disorders have been

successful as was the case with the published tool Prioritizer [29]. We

therefore set out to test such an approach in complex disease.

Investigators have rapidly populated databases of such protein-

protein interactions over the past decade. The reported interac-

tions in PPI databases stem from both small, directed investiga-

tions and high-throughput experiments, primarily yeast two-

hybrid screens and affinity purification followed by mass

spectrometry [30]. These data are inherently noisy: beyond

technical false positives and negatives, experiments in vitro may

report interactions that do not occur in vivo simply because the

proteins involved never overlap spatially or temporally. To

mitigate the noisiness of PPI databases, we extract networks from

‘‘InWeb’’, assembled in 2007 by Lage et al [24,31]. InWeb is a

database of 169,810 high-confidence pair-wise interactions

involving 12,793 proteins (human proteins and their orthologs).

Lage et al. define high-confidence interactions as those seen in

multiple independent experiments and reported more often in

lower-throughput experiments [24]. To further restrict the data to

biologically plausible interactions, we overlay mRNA expression

information to confirm co-expression of binding partners; this

correlates with co-localization, similar phenotype and participa-

tion in a protein complex [31,32].

Assessing the significance of networks built from PPI data is

challenging for two reasons: first, overall connectivity is a function of

the binding degree (number of connections in the database for a

given protein) of proteins within the network. Thus, the apparent

density of a network could simply be due to the lack of specificity

with which its constituents bind in vitro. Second, certain processes are

more extensively studied, so more connections between proteins

involved in them may be reported (see Figure S1; immune proteins

are reported in more publications and have a higher mean binding

degree). This confounds our effort to assess connectivity of

associated loci if there is a bias in the data. From a genetic

standpoint, a common randomization method would involve

sampling SNPs from the genome matched for the appropriate

parameters (such as gene density and protein binding degree). This

method becomes highly limited if the disease loci contain genes that

are better studied than the randomly sampled SNPs.

Therefore, we apply a permutation method that is robust to

non-specific binding and differences in publication density. We

perform a within-degree node-label permutation that is carried out

as follows: a random network is built that has nearly the exact

same structure as the original InWeb network, only the node labels

(i.e. the protein names) are randomly re-assigned to nodes of equal

binding degree; this method assumes a null distribution of

connectivity that is entirely a function of the binding degree of

individual proteins. Random networks will have the same size,

number of edges and per-protein binding degree as InWeb; we

build 50,000 different random networks. With this method, we are

able to test the non-randomness of our network conditional on the

exact binding degree distribution of our disease proteins.

Others have used PPI data in complex disease to understand

epistatic loci or to build a network of interacting proteins from

associated loci [33–35]. The novelty of our method lies not in the idea

that PPI data can be used to help understand genetic loci associated to

disease, but rather in that we have developed a broadly-applicable

method to statistically evaluate the degree to which non-random PPI

networks emerge from loci associated to complex disease and to

leverage from this insight about causal proteins in large loci [33,34].

We show this to be the case in a number of diseases.

Here, we use this methodology to evaluate whether genes in loci

associated to five complex traits are significantly connected via

protein-protein interactions. We report an algorithm to build and

assess PPI networks using the InWeb database and find robust,

statistically significant networks underlying associations to RA,

CD, height and lipid levels, which we suggest as representative of

the underlying pathogenic molecular processes. We then perform

several detailed analyses on the RA and CD networks to confirm

that they contain true biological insight into disease. We use

independent mRNA expression data to show that the prioritized

associated proteins we propose as interacting are co-expressed in

relevant immune tissues, supporting a plausible biological setting

for our findings as well as the validity of the reported protein-

Author Summary

Genome-wide association studies have uncovered hun-
dreds of DNA changes associated with complex disease.
The ultimate promise of these studies is the understanding
of disease biology; this goal, however, is not easily
achieved because each disease has yielded numerous
associations, each one pointing to a region of the genome,
rather than a specific causal mutation. Presumably, the
causal variants affect components of common molecular
processes, and a first step in understanding the disease
biology perturbed in patients is to identify connections
among regions associated to disease. Since it has been
reported in numerous Mendelian diseases that protein
products of causal genes tend to physically bind each
other, we chose to approach this problem using known
protein–protein interactions to test whether any of the
products of genes in five complex trait-associated loci bind
each other. We applied several permutation methods and
find robustly significant connectivity within four of the
traits. In Crohn’s disease and rheumatoid arthritis, we are
able to show that these genes are co-expressed and that
other proteins emerging in the network are enriched for
association to disease. These findings suggest that, for the
complex traits studied here, associated loci contain
variants that affect common molecular processes, rather
than distinct mechanisms specific to each association.

Proteins in Disease Regions Physically Interact
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protein interactions. Lastly, by analyzing more recent GWAS

meta-analysis results, we show that these networks contain

components that show significant evidence of further genetic

associations: proteins interacting with multiple associated network

members and encoded elsewhere in the genome themselves carry

an excess of association to disease in the latest meta-analyses of

each of these diseases. Our method, available for download,

generates an experimentally tractable hypothesis of the molecular

underpinnings of pathogenesis.

Results

Network Construction and Evaluation Pipeline
We construct and evaluate networks of disease loci as outlined

in Figure 1. We first define associated proteins as gene products

encoded in genomic loci harboring variants associated to disease

(Figure 1A, 1B; see Materials and Methods for locus definition).

We construct networks of protein-protein interactions representing

proteins as nodes connected by an edge if there is in vitro evidence

of interaction (InWeb high-confidence interaction set). We build

direct networks, in which any two associated proteins can be

connected by exactly one edge, and indirect networks, where

associated proteins can be connected via common interactor proteins

(not encoded in associated loci) with which the associated proteins

each share an edge. We restrict direct and indirect interactions to

only those between proteins encoded in distinct associated loci.

We then calculate several metrics to evaluate network

properties. These metrics can be divided into two categories: an

edge metric and node metrics. The edge metric is the direct network

connectivity parameter defined as the number of edges in the direct

network. We interpret direct network connectivity as the frequency with

which different loci harbor proteins that directly bind each other,

regardless of how they assemble; direct network connectivity is therefore

our most straightforward metric. Node metrics include the

following: associated protein direct connectivity and associated protein

indirect connectivity which refer to the number of distinct loci an

Figure 1. Pictorial outline of methodology. A. Genes overlapping the wingspan of associated SNPs are defined, and these genes code for
associated proteins. B. Associated proteins are used to recover direct and indirect networks. Direct networks (left) are built from direct interactions
between associated proteins according to the InWeb database (colored proteins). Connections between proteins within the same locus are not
considered. Indirect networks (right) are built by allowing connections between associated proteins through a protein elsewhere in the genome
(grey). Various network parameters to quantify connectivity, defined in the text, are assigned. C. Random networks are built from a within-degree
node-label permutation method described in Text S1. An empirical distribution is constructed for each network parameter and used to evaluate the
significance of networks. D. Using the same permutation method to score individual proteins, a subset of proteins per locus is nominated as
candidates for harboring causal variants (red circles). Scores used to nominate candidates, described in Text S1, are Bonferroni corrected for the
number of possible candidates within each locus. E. Candidate genes from D (nominal p-values used) are tested for co-expression.
doi:10.1371/journal.pgen.1001273.g001

Proteins in Disease Regions Physically Interact
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associated protein can be connected to directly and indirectly,

respectively, and common interactor connectivity which refers to the

average number of proteins in distinct loci bound by common

interactors in indirect networks. We interpret all three node

metrics as descriptive of the type of network that was constructed:

a stream of connections (such as the network A-B-C-D-E) will

likely have low and insignificant node metrics despite a significant

edge metric, whereas a more tightly clustered network might be

enriched for both edge and node metrics. We assess the statistical

significance of the various connectivity parameters using a within-

degree node-label permutation strategy that controls for variation

in the degree to which certain proteins are studied or behave in

vitro (Figure 1C; see Text S1 for details on the permutation

strategy, evaluation of its ability to distinguish signal from noise

and a benchmark analysis of Fanconi Anemia). As we are

interested in the processes underlying disease, we also define the

gene encoding the top-scoring protein in each locus as most likely

to be causal for association (Figure 1D; see Text S1 for

prioritization strategy). We then use tissue expression data to test

whether our nominated candidate genes are enriched in the same

tissue(s) and therefore participate in a network that is biologically

feasible (Figure 1E; Text S1). With this approach, we aim to

construct plausible models of biological networks underlying

pathogenesis.

Our approach controls for biases in the data: using the high-

confidence interactions from InWeb addresses laboratory artifacts,

and node-label permutation accounts for ascertainment biases due

to differing levels of knowledge on biological processes for those

proteins present in InWeb (Figure S1). We show empirically that

priority scores given to proteins have no correlation with the

degree to which they are represented in the database (Figure S2).

A fundamental limitation of any functional data is that genes for

which data are missing will not be considered. This applies to

similar methods, including expression data that can be limited to

genes represented on specific arrays or ontology analyses that are

restricted to well characterized genes. Here, proteins that are

entirely absent from the filtered InWeb data are not considered in

our analysis (see Discussion). It is important to note that these

genes, listed in Table S1, cannot be ruled out as potentially

affected by causal variation since we have no power to make such

a conclusion. We note, however, that the loci we have considered

here (for the 5 complex traits) have the majority of their genes

present in the high-confidence InWeb database (Table S1, median

inclusion of 81.5%).

We also tested two additional permutation strategies on RA and

CD – one based on random sampling of SNPs from the genome

matched for proximal gene content and protein binding degree

and the other based on edge permutation – that generally

provided equivalent results (Figures S3 and S4); however SNP

permutation may not be robust in the presence of extremes of gene

density or protein binding degree at some loci, and edge

permutation does not preserve the network structure of InWeb

(Text S1). This analysis pipeline, which we call Disease Association

Protein-Protein Link Evaluator (DAPPLE), is available for

download at http://www.broadinstitute.org/,rossin/DAPPLE.

Gene Products Encoded in Associated Loci Interact
We first tested the method on the Mendelian disease Fanconi

Anemia (FA) as a proof of principle. We input 9 of the FA genes

and found 23 connections among them; compared to 50,000

random networks, the FA network is enriched for connectivity

(direct network connectivity p,,261025, Figure S5, Text S1). This

result is consistent with current understanding of how the FA genes

code for proteins that are part of the same DNA repair complex

[36].

We then set out to test our method on two autoimmune diseases

that are both complex traits. Recent GWA studies in autoimmune

and inflammatory diseases have been particularly successful at

determining loci encoding risk to disease, with over 100 loci

described to date [2–7,1]. We investigated rheumatoid arthritis

(RA) and Crohn’s disease (CD) and built networks from proteins

encoded in 25 and 27 gene-containing associated loci, respectively

[2,8]. As described above, we built direct and indirect networks for

each set of loci, evaluated the significance of the 4 network metrics

to assess the probability that such networks could arise by chance,

and we nominated candidate genes by assessing network

participation. We followed up our results by assessing tissue co-

expression as a test for the biological feasibility.

We were able to connect 20/27 loci for RA and 12/25 loci for

CD in direct networks, strongly suggesting functional connections

between proteins encoded in the associated regions. When

compared to 50,000 random networks, we found that the direct

network connectivity (the number of direct network edges) was

statistically significant (27 for each disease; PRA = 361024,

PCD = 1.1161023; Figure 2) as was the associated protein direct

connectivity (Figure S6A and S6B, PRA = 0.02, PCD = 0.00305). Thus

disease-associated loci encode directly interacting proteins beyond

chance expectation, suggesting that risk variants may act on suites

of proteins involved in the same process.

We were then able to connect all but one gene-containing

associated loci in each disease by expanding our networks to

include common interactors (26/27 in RA; 24/25 in CD). The

associated protein indirect connectivity was significantly enriched in both

diseases (Figure S6A and S6B p = 161025 in RA, p = 4.161024

for CD), as was the common interactor connectivity (Figure S6A and

S6B, p = 761025 for RA and p = 1.161024 for CD).

In aggregate, these results suggest that the observations of

connectivity in Mendelian diseases are recapitulated in both RA

and CD and that common risk variants predisposing to these

diseases may impact sets of interacting proteins.

Given the significant connectivity of common interactors in the

indirect networks for RA and CD, we speculated that common

interactors might themselves be affected by previously undescribed

risk variation. To test this, we consulted association data for each

disease in the available data from meta-analyses, which for RA was

in a newly completed meta-analysis and for CD was the same

study that yielded the 30 loci [2,37]. We assigned each

recombination hotspot-bounded linkage-disequilibrium (LD) block

in the genome an association score that represents the maximum

score in that block corrected for the number independent SNPs

therein. Genes were assigned association scores based on the

blocks they overlap; this score distribution can then be compared

to the scores of all gene-containing blocks in the genome (for both

diseases, we removed the MHC from this analysis due to LD

properties). Using this method, we found that common interactors

expressed in the same tissues as associated proteins in our networks

(see below) were encoded in regions with evidence of association

significantly in excess to what is expected in gene-containing

regions. In RA, the distribution of common interactor scores was

skewed toward higher association (one-tailed rank sum

p = 1.761025) and in CD, we saw similar enrichment

(p = 6.561024). See Text S1 for details of analysis. This observed

skew suggests that the common interactors themselves may harbor

risk variants; we therefore considered the regions they overlap as

candidates for replication (see ‘‘Crohn’s Network Predicts New

Loci’’ section).

Proteins in Disease Regions Physically Interact
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Extending Analysis to Height, Lipids, and Type 2 Diabetes
To test whether the observed significant connectivity seen in RA

and CD was present in non-immune complex traits, we tested our

method on three traits: human height, blood lipid concentration

(both LDL and HDL) and Type 2 Diabetes (T2D). We used 37

replicated gene-containing loci associated with human height, 18

with blood lipid levels and 36 with T2D [9–17]. The loci

associated to height and lipids each contain proteins that assemble

into significantly connected direct networks (Figure S6C and S6D,

direct network connectivity p = 161024 and p = 1.961024 for each

disease, respectively; see Text S1 for significance of other 3

parameters). In the height network, 19/42 loci participated in the

direct network and 34/42 participate in the indirect networks, but

only the direct network connectivity and the common interactor connectivity

were significantly greater than chance. In the lipids network, 11/

19 participated in the direct network and 16/19 in the indirect; all

node metrics except the common interactor connectivity were signifi-

cantly enriched. 9/37 T2D loci participated in the direct network

and 34/37 in the indirect network; however, 3/4 metrics were not

greater than chance expectation and only one was slightly

enriched (Figure S6E, network connectivity p = 0.44960; see Text S1

for significance of other 3 parameters).

We therefore conclude that the PPI connectivity seen in two

autoimmune diseases can be generalized to other complex trait

loci (height- and lipid-associated regions), though we could not

confirm the significance of the T2D network.

Our results suggest that functionally connected proteins reside

in regions of the genome associated to disease risk. Permutation

analysis revealed that these connections are in excess compared to

what is expected given the binding profiles of associated proteins.

For RA and CD, other proteins interacting with the associated

proteins also show evidence of association beyond chance

expectation. Cumulatively, these findings suggest that risk to the

complex disease/traits studied here is spread over functional

groups of proteins, directly analogous to observations in

Mendelian traits.

Prioritizing Proteins in Associated Loci Reveals Likely
Pathogenic Tissues

An obstacle to interpreting GWA results stems from the

difficulty in identifying the genes within associated regions

influenced by risk variants. Candidate genes are often selected

based on proximity to most associated markers and miscellaneous

forms of previous knowledge. We therefore asked whether our

observations could lead us to a principled, data-driven approach to

selecting candidate genes by assessing their role in our networks.

As shown in Figure 1 and described in detail in the Text S1, we

used an iterative optimization method to assign priority scores to

associated genes based on the network participation of their

encoded proteins. We nominate genes that achieve the best score

within their locus as the candidates for influencing disease risk. We

describe the results in detail here for RA and CD; see Table S2 for

scores assigned to RA, CD, blood lipid level and height genes.

We were able to nominate candidate genes in 12/21 RA loci

encoding multiple genes (Table S2; Text S1). Examples of

candidate genes in RA were IL2RA, CD40, CD28, PTPN22,

CTLA4 and TRAF1. We accomplished the same task in CD,

nominating candidate genes in 10/18 multi-genic loci. Candidates

included JAK2, STAT3, IL23R/IL12RB2, PTPN2, MST1R and

AIRE. For both diseases, genes in single-gene loci are also scored,

though they are automatically considered the candidate gene (but

not necessarily part of the underlying mechanism). It is important

to note that we do not expect high-scoring proteins in every locus;

we only expect high scores for those proteins that may participate

in the common process(es) detected via enrichment in connections.

RA and CD, like most complex diseases, most likely have many

underlying processes, not all of which are captured here.

The core networks involving only these candidate genes

represent our mechanistic predictions of pathways underlying

pathogenesis in RA and CD. From a statistical standpoint the final

networks built from candidate proteins account for the excess

connectivity that we initially observed: the significance remains if

we restrict multi-genic loci to just these genes (Figure S7A–S7D,

Figure 2. RA and CD direct networks are significantly interconnected. The direct network connectivity, the number of edges in the direct
network, was enumerated for the disease networks and 50,000 random networks. A histogram was plotted to represent random expectation, and the
disease network is shown by an arrow for (A) RA and (B) CD. See Figure S6 for remaining parameters and for parameters of height, lipids and T2D.
doi:10.1371/journal.pgen.1001273.g002

Proteins in Disease Regions Physically Interact
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direct network connectivity p,261025 for RA and CD), while

networks built from the remaining non-prioritized genes are less

significant (Figure S8, direct network connectivity p = 0.0368 and

p = 0.993, for RA and CD respectively). The remaining signifi-

cance in RA is most likely a sign of additional important proteins

that did not make the cutoff. From a biological standpoint, our

candidates agree with experimental findings in the few cases where

such evidence exists [38–45]. We therefore show that the

connectivity between associated loci in RA and CD is primarily

driven by a small subset of associated proteins encoded in those

regions; this observation suggests that the interacting proteins –

and the biological pathways they represent – may be the targets of

risk variation.

To test the biological plausibility of our nominated core

networks, we asked whether the candidate genes are co-enriched

in subsets of particularly relevant tissues in a reference microarray

dataset consisting of 14,184 transcripts measured in 55 immune, 8

gastro-intestinal, 27 neurological and 36 miscellaneous other

tissues (126 total) [46]. These publicly available data are curated:

expression intensities were converted to enrichment scores to

reflect the enrichment of a gene in a tissue given its expression in

all tissues. For each tissue, we compared the expression

enrichment of RA and CD candidate genes to the rest of the

genes in the genome using a one-tailed rank-sum test, resulting in a

p-value for each tissue. A significant difference for a given tissue

indicated that the genes in question were enriched for expression

in that tissue compared to all genes in the genome. We also

performed the same analysis for the remaining non-prioritized

genes in associated regions to test whether the network

prioritization method identified genes that were enriched in tissues

distinct from non-prioritized genes. For discussion purposes, we

defined ‘‘top’’ tissues as tissues achieving p,0.1 (Figure 3 depicts

the entire distribution of p-values). This analysis led to 3 main

conclusions. First, we found that for each disease, enrichment only

occurred in immunologically relevant tissues (Figure 3; strikingly,

immune tissues are nearly all ranked higher than other tissues).

Second, we found that this was not the case to such an extent for

non-prioritized genes (Figure 3, black points). Third, we found that

the non-prioritized genes had fewer tissues where we could detect

enrichment (Figure 3, RA and CD candidate gene tissue scores are

more significant than tissue scores of non-prioritized genes). We

formally tested this by comparing the p-value distributions for

candidate genes and non-prioritized genes using a one-tailed rank-

sum test (p = 2.8561027 for RA; p = 2.5561024 for CD). Of the

11 top tissues for CD candidate genes, 7 are subgroups of T-cell

lymphocytes; the analogous list for RA (21 tissues) contains a mix

of immune tissues, again dominated by T-cell subgroups (Table 1).

The top tissue compartment for both diseases is defined as CD4+
T-cells.

Crohn’s Network Predicts New Loci
We hypothesized that a subset of proteins connected to the core

CD network (Figure 4B, the network built from prioritized genes

in CD loci) might be near true causal variation. Having observed

significant enrichment for association in the common interactors,

we then chose a more conservative approach to propose candidate

genes. We selected all proteins that connect directly to the core

CD network only (21 genes) and filtered them on expression in the

relevant tissues (Table 1). While this manuscript was being

prepared, a larger meta-analysis was completed and recently

published that reports 39 new loci associated to CD (295

overlapping genes) [47]. Of the 293 genes proposed by our

method (small circles, Figure 4B), 10 were in newly associated

regions (small red circles). This represents a statistically significant

enrichment compared to chance expectation based on random

draws from all 21,718 genes (p = 0.001) as well as random draws

from genes expressed in at least one of the CD-relevant tissues

(p = 0.01).

Figure 3. Candidate RA and CD genes are preferentially
expressed in immune tissues. We obtained tissue expression data
for 126 different cell types from a publicly available database, which
was grouped into immune, gastrointestinal (GI), neuronal and ‘other’
[46]. For each tissue, we compared the expression of RA (A) and CD (B)
candidate genes to the rest of the genes in the genome using a one-
tailed rank-sum test, resulting in a p-value for each tissue (-log(p) is
plotted on the y-axis). A significant difference for a given tissue
indicated that the candidate genes were enriched for expression in that
tissue compared to all genes in the genome. To test whether our
network prioritization identified genes that were co-enriched in specific
tissues beyond what was expected from all genes in associated regions,
we calculated the same p-values for the rest of the genes in RA and CD
associated loci (i.e., the genes that weren’t prioritized via our network
permutations). In this figure, we plot the tissue enrichment scores for
each tissue for the candidate genes (purple) and the non-prioritized
genes in the remaining regions of association (black). We indicate the
category of tissue on the bottom: immune (red), GI (yellow), neuronal
(green) and other (blue). We ordered the tissues by decreasing
enrichment score of the candidate genes.
doi:10.1371/journal.pgen.1001273.g003
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We performed a similar analysis in RA since the recent meta-

analysis discovered 6 new loci (18 new genes) [37]. Of the 610

genes proposed, 1 was among the 18 new genes (Figure 4A, small

red circle). This does not represent a statistically significant

enrichment.

Candidate Gene Networks Suggest Underlying Biology
The networks (Figure 4) suggest pathogenic mechanisms in

agreement with current thinking on disease etiology and propose

novel roles for candidate proteins in these pathways. The RA

network (Figure 4A) appears to represent signaling cascades involved

in the inhibition or stimulation of the NF-kB complex, a factor that

activates transcription of genes encoding cytokines, antibodies, co-

stimulatory molecules and surface receptors [43]. STAT4 encodes a

transcription factor that is activated upon engagement of cytokines,

such as IL12 and interferon type I, with their receptors [43]. We

show that not only does STAT4 show enrichment for connectivity, it

is connected indirectly to a number of associated genes encoding

surface receptor subunits that also achieve high network scores, such

as IL12RB, IL2RA and PTPRC. TNFAIP3 (known as A20 in mice)

is a cytoplasmic zinc finger protein that inhibits NF-kB activity, and

knockout mice develop widespread and ultimately lethal inflamma-

tion, making it a plausible player in RA pathogenesis [48]. Also in

the NF-kB pathway is associated protein CD40, which scores highly

in our networks and binds TRAF6 and TRAF1 directly. CD40 is

normally found on B cells but has also been shown to act as a co-

stimulatory molecule on T cells to augment CD28 response and

activate NF-kB [49].

PTPN22, a gene with strong genetic support for harboring risk

variants (including the strongly associated R620W coding polymor-

phism), has been shown to act as a negative regulator of TCR but

has not yet been definitively linked to a pathogenic mechanism

[43,50]. Here, we place it in context of other highly associated

proteins and suggest that it is part of a common mechanism.

Finally, the RA network places a number of other proteins that

have not yet been formally studied in the context of the proposed

network underlying RA; these include CD2 and CD48, as well as

FCG2RA and PRKCQ, genes suspected of being causal but not

formally placed in a mechanism with other associations.

In CD the core of the candidate network (IL12B/IL23R/

JAK2/STAT3; Figure 4B) corresponds to the interleukin-23

(IL23) signaling pathway. IL12B encodes p40, a component of

the heterodimeric IL23. The IL23R gene encodes one half of the

also heterodimeric IL23 receptor. This receptor is a cell surface

complex found on a variety of immune cells; on activation, it

induces Janus Kinase 2 (Jak2) autophosphorylation, which in turn

leads to the translocation of STAT3 to the nucleus to activate

transcription of various pro-inflammatory cytokines [40]. IL23

signaling is necessary for the activation and maintenance of a

subset of CD4+ T cells acting as ‘inflammatory effectors’; these

interleukin-17 responsive T-cells (Th17) have been implicated in

autoimmune inflammation in CD and experimental models of

other autoimmune diseases [40]. We note that IL23 belongs to the

interleukin 12 family of cytokines and both ligand and receptor

share subunits with the canonical IL12-mediated signaling

pathway, which induces activation of regulatory T cells (Treg).

Table 1. RA and CD candidate genes are preferentially expressed in immune tissues.

Rheumatoid arthritis Crohn’s disease

Tissue p-value Tissue p-value

TonsilsCD4posTcells 1.21E-06 Tcellseffectormemory 0.010879534

Th1 3.60E-06 TcellsBAFFpos 0.021533643

TcellsCD57pos 5.74E-06 Treg 0.040222981

Treg 2.42E-05 Tcellscentralmemory 0.047167636

Lymphnode 4.58E-05 ThymicSPCD8posTcells 0.052512983

Th2 5.42E-05 PeripheralnaiveCD4posTcells 0.062360126

TcellsBAFFpos 0.00012286 ThymicSPCD4posTcells 0.063736236

PeripheralCD8posTcells 0.000416196 MacrophageLPS4h 0.067420383

Tcellscentralmemory 0.000547856 MyeloidCD33pos 0.082208219

Tcellseffectormemory 0.000896003 PeripheralCD8posTcells 0.083132825

Tonsils 0.003590718 DC 0.090095533

ThymicSPCD8posTcells 0.005276588

ThymicSPCD4posTcells 0.010418466

PeripheralnaiveCD4posTcells 0.011665294

NKCD56pos 0.017592624

Tcellsgammadelta 0.018660953

MacrophageLPS4h 0.029525421

DC 0.046402891

Spleen 0.048696618

DCLPS48h 0.063014104

ThymicCD4posCD8posCD3pos 0.091299315

Expression data was downloaded from a publically available dataset [46]. The data had been previously converted into enrichment scores (see Materials and Methods).
The enrichment scores of candidate genes in RA and CD were compared to the rest of the genome by a one-tailed rank-sum test. The tissues that received a p-value of
,0.1 are shown. Of note, all tissues in this category for both RA and CD are immune, as shown in Figure 3.
doi:10.1371/journal.pgen.1001273.t001
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Our CD network suggests that other proteins participate in this

pathway, including the tyrosine phosphatases encoded by PTPN2,

a gene also associated to other autoimmune diseases [51]. Other

proteins that are indirectly connected to this pathway include

IRF1, which we score highly and that has separately been reported

to activate transcription of IL12RB1 [52]. Furthermore, the

common interactors that we prioritize for replication of association

given their involvement in the CD network – including JAK1,

STAT4, TYK2 and IL2RA – fall into the IL12 and IL23 signaling

pathway (TYK2 and IL2RA were of the genes recently found to be

in regions of association).

The CD network also generates new hypotheses about

potentially important genes. We prioritize AIRE, an associated

protein involved in T-cell development, which has not been

extensively studied in the context of Crohn’s but could plausibly

lead to autoimmunity. ZNF365, a gene that achieves a high

permutation score, has been assumed to be the causal gene

because it is the only gene to reside in the wingspan of its locus;

however, it has not been studied as part of the core network

described here (IL23R/JAK2/STAT3 pathway). Finally, CSF2,

IKZF3 and GRB7 are in the same large locus (17 genes) but achieve

significant permutation scores; these genes have been less well

studied in the context of CD.

Discussion

We have shown that proteins encoded in regions associated to RA,

CD, height and lipids interact and that the networks they form are

significantly connected when compared to random networks. In CD

and RA, the genes encoding prioritized proteins are preferentially

expressed in immune tissues relevant to the pathogenesis of both

diseases, while the rest of the genes in associated loci show less tissue

preference. Furthermore, we can connect other associated proteins

to these networks via common interactors, which appear to be

encoded in genomic regions harboring further risk variants. Newly

available data in CD allowed us to confirm that genes predicted to be

near causal variation are indeed in regions now known to be

associated to CD. We note that the conclusion of connectivity could

not be extended to T2D, and we hypothesize that the lack of

connectivity may be due to disparate underlying mechanisms that

have yet to be well captured genetically. Though our aim was to

build and analyze networks that emerge from replicated regions of

association, we feel that a promising future direction may be to look

more broadly for networks enriched in weaker signals of association.

Evidence that this type of analysis may be helpful is that we pointed

to a set of weaker CD association signals that were found to be true

positives in a larger study.

Our results have several implications for the interpretation of

genome-wide association studies: first, our ability to connect the

majority of associated loci in a limited number of molecular

networks suggests that these represent processes underlying

pathogenesis. Second, these networks are unbiased, in the sense

that they do not rely on previous classifications of gene function or

pathway lists; rather, we assemble our networks from low-level

functional genomics data and allow network structure, if any, to

emerge. Third, our approach is general; we have demonstrated it

using interactions between protein products, but any relationship

between genes or other genomic features (non-coding RNAs,

enhancer elements, conserved regions etc.) may be used in the

same fashion. Even more powerful, approaches combining such

orthogonal data types will be rewarding. The limitation to using

PPI data from a curated database such as InWeb is that proteins

for which no high-confidence interactions exist will be left out of

the analysis. As such, our analysis is limited to proteins present in

the database. Additionally, while we controlled for the biases we

observed, other undetected biases still may exist.

Figure 4. Final disease networks. Resultant networks built from candidate genes are depicted for RA and CD (A and B, respectively). Using only
the candidate genes, we plotted the direct network as well as any other proteins connected to the direct network after filtering them on expression
in any one of the tissues found to be specific to the core network. 610 such proteins connect to the RA network and 293 such proteins connect to the
CD network. Large circles represent disease proteins, and small circles represent the connected proteins. Small red circles indicate proteins connected
to the core network that were newly identified associated regions (10 proteins in CD and 1 protein in RA). The large circles are colored by locus.
doi:10.1371/journal.pgen.1001273.g004
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Interestingly, there are certain cases where the method is able to

distinguish between proteins that are close in the genome and

functionally very similar. In RA, the rs12746613 locus has 3 genes

in the PPI database – FCG2RA, FCGR3A and HSP70B. FCG2RA

achieved a nominal p-value of 0.00703, whereas FCGR3A

achieved p = 0.38296. Similarly, in the large rs3197999 locus in

CD, the method gave MST1R a p-value of 0.0066 whereas MST1,

the ligand of MST1R, achieved a p-value of 1. In these cases, the

method is able to distinguish between functionally similar genes.

There are times when it is unable to distinguish between

functionally similar genes, however, such as the IL21/IL2 locus

in RA, the STAT1/STAT4 locus in RA and the STAT3/STAT5A/

STAT5B locus in CD.

We note in passing that the candidate genes we nominate are

on average the closest to the most associated SNP in each locus,

even though proximity within the LD region was not considered

in the PPI analysis (p = 0.005, Figure S9). This supports the

theory that the majority of causal variation will be close to the

association signal rather than anywhere in the region of LD. We

also observed overlap between genes prioritized by this method

and GRAIL, a text-mining approach that uses orthogonal data

(Table S2) [19]. We depict this information, as well as overlap

between prioritized genes and the presence of non-synonymous

SNPs, in Figure S10.

In this paper, we have studied 5 complex phenotypes, 4 of

which show evidence of abundant PPI connections across loci.

Our results therefore allow us to speculate that other complex

diseases may behave in the same way and that genetic risk may be

spread over the molecular processes that influence disease, rather

than a single, catastrophic mutation as in Mendelian inheritance.

In order to determine whether what we find here is expandable to

complex disease in general, however, we would need to apply our

method to the many more diseases and traits to which regions of

the genome have been associated. Nonetheless, for the networks

that emerge here, our approach identifies sets of proteins plausibly

involved in pathogenesis, and the next step will be to identify what

the molecular and phenotypic consequences of perturbing such

processes are and how they relate to overall disease etiology.

Materials and Methods

InWeb Database
We used a probabilistic database of reported protein-protein

interactions described in 2007 by Lage et al [24,31]. This database

contains 428,430 reported interactions, 169,810 of which are

deemed high-confidence, non-self interactions across 12,793

proteins. High-confidence is defined by a rigorously tested signal

to noise threshold as determined by comparison to well-established

interactions [24]. Briefly, InWeb combines reported protein

interactions from MINT, BIND, IntAct, KEGG annotated

protein-protein interactions (PPrel), KEGG Enzymes involved in

neighboring steps (ECrel), Reactome and others as described

elsewhere in detail [53–61]. All human interactions were pooled

and interactions in orthologous protein pairs passing a strict

threshold for orthology were included. Each interaction was

assigned a probabilistic score based on the neighborhood of the

interaction, the scale of the experiment in which the interaction

was reported and the number of different publications in which the

interaction had been sited. The data we used is available at www.

broadinstitute.org/,rossin/PPI/ppi.html.

Disease Loci
30 CD SNPs were derived from the first CD meta analysis of

which 25 contain genes [2]. 28 RA SNPs were derived from the

most recent RA review of which 27 contain genes [8]. 42 Height

SNPs were derived from a number of analyses of which 38 contain

genes [10,13,16]. 19 blood lipid level SNPs were derived from a

number of analyses of which all 19 contain genes [11,15]. Finally,

42 T2D SNPs were derived from a number of analyses of which 37

contain genes [9,12,14,17].

Translating SNPs to Genes
Hotspot and linkage disequilibrium (LD) information were

downloaded from www.hapmap.org for CEU hg17 and hg18 to

match the version in which associations were reported [62]. We

defined the wingspan of a SNP as the region containing SNPs with

r2.0.5 to the associated SNP; this region is then extended to the

nearest recombination hotspot. We downloaded the Ensembl

human gene list from UCSC Genome Browser and collapsed

isoforms into single genes [63]. We converted gene IDs from

Ensemble to InWeb IDs. A gene’s residence in a locus is defined

by whether 110 kb upstream and 40 kb downstream (to include

regulatory DNA) of the coding region of the gene’s largest isoform

overlaps the SNP wingspan [64].

Statistical Analysis
All analyses, including building networks and evaluating

significance, were carried out in R, Perl and Python and are

available at www.broadinstitute.org/,rossin/PPI/ppi.html. De-

tails on the algorithms are available in the Text S1 file.

Supporting Information

Figure S1 Immune proteins are more likely to be in publications

involving reported protein-protein interactions. For each protein,

we enumerated the number of unique publications in which it is

reported. We then categorized proteins as ‘‘immune’’ or ‘‘non-

immune’’ based on the same expression data used in Figure 3.

Genes in the top 2% of expression for at least 2 of the 55 immune

tissues were deemed immune genes; their proteins were then

deemed immune-proteins. The distribution of publications for

immune proteins is significantly different than the background

distribution (Kolmogorov-Smirnov p-value ,2E-16).

Found at: doi:10.1371/journal.pgen.1001273.s001 (0.13 MB TIF)

Figure S2 Correlation between prioritization p-value and

binding degree. We show that there is no correlation between

prioritization p-values given to genes and their representation in

the database. We show this in randomized networks (A) and in the

disease networks (B).

Found at: doi:10.1371/journal.pgen.1001273.s002 (0.31 MB TIF)

Figure S3 RA and CD networks are significantly connected

when tested by SNP matching. As a test for robust enrichment in

connectivity, we built 1,000 networks from SNPs matched for gene

density throughout the genome for both RA and CD. These

networks were then filtered for SNPs whose associated genes have

a comparable binding degree distribution to those in RA and CD

(847 remain in RA, 353 remain in CD, see Text S1). We show the

expected random distribution in relation to the disease network for

each of the 4 parameters (direct network connectivity, associated

protein direct connectivity, associated protein indirect connectiv-

ity, common interactor connectivity) for RA (A) and CD (B).

Permuted networks were generated as described in Text S1.

Results found by node-label permutation were similar, though less

so for RA. From left to right and top to bottom for RA, p = 0.005,

= 0.013, = 0.07, and = 0.06. From left to right and top to bottom

for CD, p = ,0.001, = 0.003, ,0.001, and = 0.033.

Found at: doi:10.1371/journal.pgen.1001273.s003 (0.69 MB PDF)
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Figure S4 RA and CD networks are significantly connected

when tested by edge shuffling. As a test for robust enrichment in

connectivity, we built 1,000 networks using an edge shuffling

method (see Text S1 for details). We show the expected random

distribution in relation to the disease network for each of the 4

parameters (direct network connectivity, associated protein direct

connectivity, associated protein indirect connectivity, common

interactor connectivity) for RA (A) and CD (B). Permuted

networks were generated as described in Text S1. Results found

by node-label permutation were similar. From left to right and top

to bottom for RA, p,0.001, = 0.013,,.001, and ,0.001. From

left to right and top to bottom for CD, p = ,0.001, ,0.001,

,0.001, and = 0.001.

Found at: doi:10.1371/journal.pgen.1001273.s004 (0.70 MB PDF)

Figure S5 Fanconia Anemia network. As a benchmark analysis,

we tested the method on Fanconia Anemia, a Mendelian disorder

known to be caused by genes coding for interacting proteins. 9 of

the 13 FA genes were in the InWeb database. We found that the

direct network connectivity was 23, which is many more than

expected by chance (p,,2E-5). The associated protein direct

connectivity, associated protein indirect connectivity and common

interactor connectivity were all significantly enriched (p,2E-5,

p = 0.004, p = 0.009, respectively). These results agree with the

current understanding of FA pathogenesis. FA Network is shown.

Found at: doi:10.1371/journal.pgen.1001273.s005 (0.12 MB PDF)

Figure S6 Network parameters for RA, CD, Height, Lipids, and

T2D. We show the expected random distribution in relation to the

disease network (arrow) for each of the 4 parameters (direct

network connectivity, associated protein direct connectivity,

associated protein indirect connectivity, common interactor

connectivity) for RA (A), CD (B), Height (C), Lipids (D), and

T2D(E). Permuted networks were generated as described in Text

S1. Connectivity parameter scores are as follows. RA: 0.00031,

0.02000, 2.9734E-5, 6.9380E-5. CD: 0.00121, 0.00336, 0.00023,

0.00014. Height: 1e-04, 0.8446, 0.192, ,2E-5. Lipids: 0.00018,

0.01810, 0.00092, 0.13537. T2D: 0.41698, 0.23713, 0.03202,

0.23713.

Found at: doi:10.1371/journal.pgen.1001273.s006 (2.82 MB PDF)

Figure S7 RA and CD networks built from candidate genes are

significantly connected. Using the permutation method, we

nominated candidate genes as those that are more highly

connected to the network than chance expectation. If such a

high-scoring protein is found, the remaining proteins in the locus

scoring p.0.05 are removed. The remaining network is

significantly enriched for connectivity. We show the null

distribution in relation to the disease network for each of the 4

parameters (direct network connectivity, associated protein direct

connectivity, associated protein indirect connectivity, common

interactor connectivity) for RA (A) and CD (B). From left to right

and top to bottom for RA, p,2E-5, = 0.017, ,2E-5 and ,2E-5.

From left to right and top to bottom for CD, p,2E-5, = 0.008,

,2E-5 and ,2E-5.

Found at: doi:10.1371/journal.pgen.1001273.s007 (0.70 MB PDF)

Figure S8 The remaining non-candidate proteins are not

enriched for connectivity in RA and CD. Those proteins that

are filtered out during the candidate gene process are not enriched

for connectivity. We show the expected random distribution in

relation to the disease network for each of the 4 parameters (direct

network connectivity, associated protein direct connectivity,

associated protein indirect connectivity, common interactor

connectivity) for RA (A) and CD (B). From left to right and top

to bottom for RA, p = 0.0368, 0.2424, 0.7274 and 0.1748. From

left to right and top to bottom for CD, p = 0.993, 0.999, 0.6558

and 0.7468.

Found at: doi:10.1371/journal.pgen.1001273.s008 (0.72 MB PDF)

Figure S9 Candidate genes are likely to be near to the associated

SNP. Candidate genes within multigenic loci were prioritized as

described. We defined the distance from a gene to the SNP that

tags it as the shortest of two distances: the distance from its start

codon to the SNP and its stop codon to the SNP. Genes within a

SNP’s wingspan are then given ranks as to how close they are to

the SNP (closest gene, 2nd closest gene, and so on). These

distances were collected for RA and CD and the distribution is

shown (salmon bars). We compared this distribution to the

distribution of 100 simulated distances as defined by random

assignment of candidate genes in associated loci (black hatched

bars). The distributions are significantly different (one-tailed

Kolmogorov-Smirnov test p = 0.008).

Found at: doi:10.1371/journal.pgen.1001273.s009 (0.08 MB TIF)

Figure S10 Overlap of prioritized genes across methods. For

each SNP, we compared the prioritized genes through PPI

networks, through GRAIL and through presence of non-

synonymous SNPs. We show the overlap for all SNPs, where

two methods agree if at least one prioritized gene in the region is

the same.

Found at: doi:10.1371/journal.pgen.1001273.s010 (0.02 MB PDF)

Table S1 Enumerating genes included and missing from the

analysis. For each disease, each locus (column 2) is annotated with

the number of genes in the locus according to the Ensembl gene

list downloaded from the UCSC Genome Browser (column 3 and

6) and the number of genes in the locus for which InWeb high-

confidence binding data is available (column 4 and 7). The percent

of genes included in the analysis out of the total possible genes was

calculated (column 5). The median gene inclusion is 81.5%.

*Genes in the Ensembl gene list that are not protein-coding or

proven to be protein-coding (rna genes, pseudogenes, theoretical

proteins) are not included in the ‘‘All Genes’’ list.

Found at: doi:10.1371/journal.pgen.1001273.s011 (0.05 MB

XLS)

Table S2 CD and RA candidate genes proposed through

permutation. This file provides the candidate gene scores for all

CD and RA genes involved in the networks (A), a comparison of

prioritized genes to those of GRAIL and genes with coding SNPs

for Crohn’s disease (B), and a full comparison of GRAIL p-values

for all 4 significantly connected traits (C).

Found at: doi:10.1371/journal.pgen.1001273.s012 (0.13 MB

XLS)

Text S1 Supplementary Methods.

Found at: doi:10.1371/journal.pgen.1001273.s013 (0.06 MB

DOC)
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58 Department of Biosciences and Nutrition, Karolinska Institute,

Stockholm, Sweden
59 Department of Gastroenterology, University Medical Center

Groningen, Groningen, The Netherlands
60 Department of Pediatrics; Emory University School of Medicine,

Atlanta, GA, USA
61 Institute of Human Genetics, Newcastle University, Newcastle upon

Tyne, UK
62 Department of Human Genetics, Graduate School of Public Health,

University of Pittsburgh, Pittsburgh, Pennsylvania, USA
63 Department for General Internal Medicine, Christian-Albrechts-

University, Schittenhelmstr. 12, D-24105 Kiel, Germany
64 Department of Genetics, Yale School of Medicine, New Haven CT,

USA
65 Unit of Gastroenterology, University Hospital Careggi Florence, Italy
66 Center for Human Genetic Research, Massachusetts General

Hospital, Harvard Medical School, Boston, Massachusetts, USA

Proteins in Disease Regions Physically Interact

PLoS Genetics | www.plosgenetics.org 11 January 2011 | Volume 7 | Issue 1 | e1001273



Author Contributions

Conceived and designed the experiments: EJR KL SR RJX DT CC MJD.

Performed the experiments: EJR DT. Analyzed the data: EJR. Contrib-

uted reagents/materials/analysis tools: EJR RJX DT YB International

Inflammatory Bowel Disease Genetics Consortium CC MJD. Wrote the

paper: EJR KL SR RJX CC MJD.

References

1. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, et al. (2009)

Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with

rheumatoid arthritis risk. Nat Genet 41: 1313–1318.

2. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, et al. (2008) Genome-

wide association defines more than 30 distinct susceptibility loci for Crohn’s
disease. Nat Genet 40: 955–962.

3. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. (2009)

Genome-wide association study and meta-analysis find that over 40 loci affect
risk of type 1 diabetes. Nat Genet Available at: http://www.ncbi.nlm.nih.gov.

ezp-prod1.hul.harvard.edu/pubmed/19430480. Accessed 19 March 2010.

4. Barrett JC, Lee JC, Lees CW, Prescott NJ, Anderson CA, et al. (2009) Genome-
wide association study of ulcerative colitis identifies three new susceptibility loci,

including the HNF4A region. Nat Genet 41: 1330–1334.

5. De Jager PL, Jia X, Wang J, de Bakker PIW, Ottoboni L, et al. (2009) Meta-
analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as

new multiple sclerosis susceptibility loci. Nat Genet 41: 776–782.

6. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, et al. (2009) A large-

scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and

IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–1233.

7. Hunt KA, Zhernakova A, Turner G, Heap GAR, Franke L, et al. (2008) Newly

identified genetic risk variants for celiac disease related to the immune response.
Nat Genet 40: 395–402.

8. Raychaudhuri S (2010) Recent advances in the genetics of rheumatoid arthritis.

Curr Opin Rheumatol 22: 109–118.

9. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, et al. (2010) New

genetic loci implicated in fasting glucose homeostasis and their impact on type 2

diabetes risk. Nat Genet 42: 105–116.

10. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV,

et al. (2008) Many sequence variants affecting diversity of adult human height.

Nat Genet 40: 609–615.

11. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, et al. (2008) Six new

loci associated with blood low-density lipoprotein cholesterol, high-density
lipoprotein cholesterol or triglycerides in humans. Nat Genet 40: 189–197.

12. McCarthy MI, Zeggini E (2009) Genome-wide association studies in type 2

diabetes. Curr Diab Rep 9: 164–171.

13. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, et al. (2008)

Identification of ten loci associated with height highlights new biological

pathways in human growth. Nat Genet 40: 584–591.

14. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, et al. (2010) Twelve

type 2 diabetes susceptibility loci identified through large-scale association
analysis. Nat Genet 42: 579–589.

15. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, et al. (2008) Newly

identified loci that influence lipid concentrations and risk of coronary artery
disease. Nat Genet 40: 161–169.

16. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, et al. (2008)

Genome-wide association analysis identifies 20 loci that influence adult height.
Nat Genet 40: 575–583.

17. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, et al. (2008) Meta-

analysis of genome-wide association data and large-scale replication identifies
additional susceptibility loci for type 2 diabetes. Nat Genet 40: 638–645.

18. Zhang X, Huang W, Yang S, Sun L, Zhang F, et al. (2009) Psoriasis genome-
wide association study identifies susceptibility variants within LCE gene cluster

at 1q21. Nat Genet 41: 205–210.

19. Raychaudhuri S, Plenge RM, Rossin EJ, Ng ACY, Purcell SM, et al. (2009)
Identifying relationships among genomic disease regions: predicting genes at

pathogenic SNP associations and rare deletions. PLoS Genet 5: e1000534.

doi:10.1371/journal.pgen.1000534.

20. Wang K, Li M, Bucan M (2007) Pathway-Based Approaches for Analysis of

Genomewide Association Studies. Am J Hum Genet 81: Available at: http://
www.ncbi.nlm.nih.gov/pubmed/17966091. Accessed 3 March 2010.

21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

22. Brunner HG, van Driel MA (2004) From syndrome families to functional

genomics. Nat Rev Genet 5: 545–551.

23. D’Andrea AD, Grompe M (2003) The Fanconi anaemia/BRCA pathway. Nat

Rev Cancer 3: 23–34.

24. Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, et al. (2007) A
human phenome-interactome network of protein complexes implicated in

genetic disorders. Nat Biotechnol 25: 309–316.

25. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, et al. (2006) A Protein-Protein
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