334 research outputs found

    Analytical computation of the off-axis Effective Area of grazing incidence X-ray mirrors

    Full text link
    Focusing mirrors for X-ray telescopes in grazing incidence, introduced in the 70s, are characterized in terms of their performance by their imaging quality and effective area, which in turn determines their sensitivity. Even though the on-axis effective area is assumed in general to characterize the collecting power of an X-ray optic, the telescope capability of imaging extended X-ray sources is also determined by the variation in its effective area with the off-axis angle. [...] The complex task of designing optics for future X-ray telescopes entails detailed computations of both imaging quality and effective area on- and off-axis. Because of their apparent complexity, both aspects have been, so far, treated by using ray-tracing routines aimed at simulating the interaction of X-ray photons with the reflecting surfaces of a given focusing system. Although this approach has been widely exploited and proven to be effective, it would also be attractive to regard the same problem from an analytical viewpoint, to assess an optical design of an X-ray optical module with a simpler calculation than a ray-tracing routine. [...] We have developed useful analytical formulae for the off-axis effective area of a double-reflection mirror in the double cone approximation, requiring only an integration and the standard routines to calculate the X-ray coating reflectivity for a given incidence angle. [...] Algebraic expressions are provided for the mirror geometric area, as a function of the off-axis angle. Finally, the results of the analytical computations presented here are validated by comparison with the corresponding predictions of a ray-tracing code.Comment: 12 pages, 11 figures, accepted for publication in "Astronomy & Astrophysics", section "Instruments, observational techniques, and data processing". Updated version after grammatical revision and typos correctio

    EVIL: Exploiting Software via Natural Language

    Get PDF
    Writing exploits for security assessment is a challenging task. The writer needs to master programming and obfuscation techniques to develop a successful exploit. To make the task easier, we propose an approach (EVIL) to automatically generate exploits in assembly/Python language from descriptions in natural language. The approach leverages Neural Machine Translation (NMT) techniques and a dataset that we developed for this work. We present an extensive experimental study to evaluate the feasibility of EVIL, using both automatic and manual analysis, and both at generating individual statements and entire exploits. The generated code achieved high accuracy in terms of syntactic and semantic correctness

    Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    Full text link
    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission; ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV; iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International Simbol-X Symposium", Paris, 2-5 december, 200

    Designing miniature x-ray optics for the SmallSat lunar science mission concept CubeX

    Get PDF
    Planetary remote-sensing instruments are often required to cover a relatively large field of view, ideally with a uniform angular resolution over the field, due to relatively large apparent sizes of planetary targets at close proximities. They also have to comply with relatively tight mass and volume constraints. For these reasons, planetary x-ray telescopes in the past were mainly collimation-based x-ray spectrometers without focusing optics. Recent advances in x-ray optics technology now enable compact focusing x-ray telescopes suitable for planetary science (e.g., BepiColombo). We present two design options for compact Wolter-I x-ray optics for a SmallSat lunar mission concept-the CubeSat X-ray telescope (CubeX). The primary objectives of CubeX are to map surface elemental abundances of selected lunar impact craters and to assess the feasibility of millisecond x-ray pulsar timing navigation in realistic deep space navigation environments. The Miniature X-ray Optics (MiXO) in CubeX utilizes electroformed NiCo alloy replication (ENR) technology, which provides many advantages over micro-pore optics (MPO) employed in BepiColombo. We carry out extensive ray traces over a grid of mirror parameters and explore a novel tapered shaped design of tightly nested shells, where both shell length and focal-plane offsets vary with shell diameter. One of the two configurations is optimized for large effective areas at low energies, while the other for lower mass and high-energy response. We compare their performances with those of conventional designs through the spatial resolution and effective area estimated by ray traces

    Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    Get PDF
    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 ÎŒm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating...

    Freund's vaccine adjuvant promotes Her2/Neu breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation has been linked to the etiology of many organ-specific cancers. Indirect evidence suggests a possible role for inflammation in breast cancer. We investigated whether the systemic inflammation induced by Freund's adjuvant (FA) promotes mammary carcinogenesis in a rat model in which cancer is induced by the <it>neu </it>oncogene.</p> <p>Methods</p> <p>The effects of FA on hyperplastic mammary lesions and mammary carcinomas were determined in a <it>neu</it>-induced rat model. The inflammatory response to FA treatment was gauged by measuring acute phase serum haptoglobin. In addition, changes in cell proliferation and apoptosis following FA treatment were assessed.</p> <p>Results</p> <p>Rats receiving FA developed twice the number of mammary carcinomas as controls. Systemic inflammation following FA treatment is chronic, as shown by a doubling of the levels of the serum biomarker, haptoglobin, 15 days following initial treatment. We also show that this systemic inflammation is associated with the increased growth of hyperplastic mammary lesions. This increased growth results from a higher rate of cellular proliferation in the absence of changes in apoptosis.</p> <p>Conclusion</p> <p>Our data suggests that systemic inflammation induced by Freund's adjuvant (FA) promotes mammary carcinogenesis. It will be important to determine whether adjuvants currently used in human vaccines also promote breast cancer.</p

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Altered plasticity of the parasympathetic innervation in the recovering rat submandibular gland following extensive atrophy

    Get PDF
    Adult rat submandibular glands have a rich autonomic innervation, with parasympathetic and sympathetic nerves working in synergy rather than antagonistically. Ligation of the secretory duct rapidly causes atrophy and the loss of most acini, which are the main target cell for parasympathetic nerves. Following deligation, there is a recovery of gland structure and function, as assessed by autonomimetic stimulation. This study examines whether the parasympathetic nerves reattach to new target cells to form functional neuro-effector junctions. Under recovery anaesthesia, the submandibular duct of adult male rats was ligated via an intra-oral approach to avoid damaging the chorda-lingual nerve. Four weeks later, rats were either killed or anaesthetized and the ligation clip removed. Following a further 8 weeks, both submandibular ducts were cannulated under terminal anaesthesia. Salivary flows were then stimulated electrically (chorda-lingual nerve at 2, 5 and 10 Hz) and subsequently by methacholine (whole-body infusion at two doses). Glands were excised, weighed and divided for further in vitro studies or fixed for histological examination. Ligation of ducts caused 75% loss of gland weight, with the loss of most acinar cells. Of the remaining acini, only 50% were innervated despite unchanged choline acetyltransferase activity, suggesting few parasympathetic nerves had died. Following deligation, submandibular glands recovered half their weight and had normal morphology. Salivary flows from both glands (per unit of gland tissue) were similar when evoked by methacholine but greater from the deligated glands when evoked by nerve stimulation. This suggests that parasympathetic nerves had reattached to new target cells in the recovered glands at a greater ratio than normal, confirming reinnervation of the regenerating gland

    Protein analysis of moro blood orange pulp during storage at low temperatures

    Full text link
    [EN] A protein analysis in the pulp of Moro blood oranges (Citrus sinensis L. Osbeck) at the onset and after 30 days of storage at either 4 or 9 degrees C was performed. All differential proteins belonged to different functional classes (sugar, amino acid and secondary metabolism, defense, stress response, oxidative process, transport and cellular component biogenesis), displaying a differential accumulation in those Moro oranges kept at 9 versus 4 degrees C, and in those stored at 4 degrees C versus onset. Anthocyanin biosynthesis structural proteins chalcone synthases and flavonone 3-hydroxylase and different glutathione S-transferases related with their vacuolar transport were up-accumulated in fruits kept at 9 versus 4 degrees C and versus the onset. Proteins related with defense and oxidative stress displayed a similar pattern, concomitant with a higher anthocyanin content, denoting a possible role of defense and other stress response pathways in anthocyanin production/accumulation.This work was supported by the São Paulo Research Foundation (FAPESP, Brazil) project (FAPESP 2014/12616-9) and Fundecitrus. LC was funded by a grant from FAPESP (2014/23447-3).Carmona-López, L.; Alquézar-García, B.; Tarraga Herrero, S.; Peña Garcia, L. (2019). Protein analysis of moro blood orange pulp during storage at low temperatures. Food Chemistry. 277:75-83. https://doi.org/10.1016/j.foodchem.2018.10.108S758327
    • 

    corecore