Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong
improvement both in sensitivity and angular resolution compared to all
instruments that have operated so far above 10 keV. The superb hard X-ray
imaging capability will be guaranteed by a mirror module of 100 electroformed
Nickel shells with a multilayer reflecting coating. Here we will describe the
technogical development and solutions adopted for the fabrication of the mirror
module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec
from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A,
terminated at the end of 2008, we have developed three engineering models with
two, two and three shells, respectively. The most critical aspects in the
development of the Simbol-X mirrors are i) the production of the 100 mandrels
with very good surface quality within the timeline of the mission; ii) the
replication of shells that must be very thin (a factor of 2 thinner than those
of XMM-Newton) and still have very good image quality up to 80 keV; iii) the
development of an integration process that allows us to integrate these very
thin mirrors maintaining their intrinsic good image quality. The Phase A study
has shown that we can fabricate the mandrels with the needed quality and that
we have developed a valid integration process. The shells that we have produced
so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and
effective area. However, we still need to make some improvements to reach the
requirements. We will briefly present these results and discuss the possible
improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International
Simbol-X Symposium", Paris, 2-5 december, 200