
EVIL: Exploiting Software via Natural Language

Pietro Liguori∗, Erfan Al-Hossami†, Vittorio Orbinato∗,
Roberto Natella∗, Samira Shaikh†, Domenico Cotroneo∗, and Bojan Cukic†

∗University of Naples Federico II, Naples, Italy

{pietro.liguori, vittorio.orbinato, roberto.natella, cotroneo}@unina.it
†University of North Carolina at Charlotte, Charlotte, NC

{ealhossa, samirashaikh, bcukic}@uncc.edu

Abstract—Writing exploits for security assessment is a
challenging task. The writer needs to master programming and
obfuscation techniques to develop a successful exploit. To make
the task easier, we propose an approach (EVIL) to automatically
generate exploits in assembly/Python language from descriptions
in natural language. The approach leverages Neural Machine
Translation (NMT) techniques and a dataset that we developed
for this work. We present an extensive experimental study
to evaluate the feasibility of EVIL, using both automatic and
manual analysis, and both at generating individual statements
and entire exploits. The generated code achieved high accuracy
in terms of syntactic and semantic correctness.

Index Terms—Automatic Exploit Generation, Neural Machine
Translation, Software Exploits, Shellcode, Encoder, Decoder

I. INTRODUCTION

In the context of software security, a solid understanding of

offensive techniques is increasingly important [1], [2]. Well-

intentioned actors, such as penetration testers, ethical hackers,

researchers, and computer security teams are engaged in devel-

oping exploits, referred to as proof-of-concept (POC), to reveal

security weaknesses within the software. Offensive security helps

us understand how attackers take advantage of vulnerabilities

and motivates vendors and users to patch them to prevent attacks

[3]. Among software exploits, code-injection attacks are the

trickiest. They allow the attacker to inject and execute arbitrary

code on the victim system. Since the injected code frequently

launches a command shell, the hacking community refers to the

payload portion of a code-injection attack as a shellcode [4].

Writing code injection exploits is a challenging task since

it requires significant technical skills. Shellcodes are typically

written in assembly language, affording the attacker full control

of the memory layout and CPU registers to attack low-level

mechanisms (e.g., heap metadata and stack return addresses) not

otherwise accessible through high-level programming languages.

Another challenge for shellcodes is modern antivirus (AV) and in-

trusion detection systems (IDS), which actively look for malicious

payloads to block attacks. To elude detection, shellcode writers

weaponize their shellcode by implementing an encoding/decoding

strategy. In other words, writers have to develop encoders
(typically, using Python) to obfuscate the original shellcode

without altering its functionality, and decoders (typically in

assembly language, as the shellcode) to revert to the payload

once it is loaded (and then executed) on the victim system.

In this work, we propose an approach, EVIL (Exploiting

software VIa natural Language), for exploit writing based on

natural language processing. The approach aims to support

both beginners and experienced researchers, by making exploits

easier to create and flattening the learning curve. In EVIL, a

machine learning system learns about exploit writing from a

dataset, containing both real exploits and their description in

the English language. Then, the writer describes the exploit

using the English language and lets the machine learning

system translate the description into assembly and Python code.

EVIL leverages recent advances in neural machine translation
(NMT) to automatically generate code from natural language

descriptions using recurrent neural networks. NMT has emerged

as a promising machine translation approach, and it is widely

recognized as the state-of-the-art method for the translation of

different languages [5], [6]. NMT has been adopted in many

different areas, to generate programs in the Python language [7],

[8], OS commands for the UNIX Bash shell [9], [10], commit

messages for version control [11], [12], code completion [13],

test cases from security requirements [14], and more. However,

NMT techniques have not heretofore been applied in the field

of software security in the manner described in our approach.

Our work provides three key contributions:

• We release a substantive dataset1 containing exploits collected

from shellcode databases and their descriptions in the

English language. The dataset includes both assembly

code (i.e, shellcodes and decoders) and Python code (i.e.,

encoders). Such data is valuable to support research in

machine translation for security-oriented applications since

the techniques are data-driven.

• We propose a new approach that applies NMT techniques to

automatically generate exploits, including both Python code

for encoding the payload, and assembly code for decoding

the payload and for the actual shellcode, based on their

description in the English language.

• We perform an extensive experimental study, to evaluate the

feasibility of the proposed approach at generating real exploits.

To this aim, we propose new metrics that go beyond evaluating

the translation of single lines of code [8], [15]–[17], but encom-

pass entire exploits as a whole. The generated code achieved

high accuracy in terms of syntactic and semantic correctness.

In the following, Section II introduces background concepts;

Section III presents the proposed approach; Section IV describes

1The dataset and the code to reproduce the experiments are publicly available
here: https://github.com/dessertlab/EVIL
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1 global _start
2 section .text
3 _start:
4 xor eax, eax
5 push eax
6 push 0x68732f2f
7 push 0x6e69622f
8 mov ebx, esp
9 push eax

10 mov edx, esp
11 push ebx
12 mov ecx, esp
13 mov al, 11
14 int 0x80
15

16 ------------------ Binary opcodes ------------------
17 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\
18 x6e\x89\xe3\x50\x89\xe2\x53\x89\xe1\xb0\x0b\xcd\x80"

Listing 1. Example of shellcode to spawn a shell on Linux x32 systems.

the dataset; Section V experimentally evaluate the approach;

Section VI describes the approach further through selected exam-

ples; Section VII discusses related work; Section VIII discusses

the ethical considerations; Section IX concludes the paper.

II. BACKGROUND

Statistics from the Common Vulnerabilities and Exposures

(CVE) database show that code-injection vulnerabilities increased

dramatically during recent years [18], [19]. Code-injection attacks

deliver and run arbitrary code on victims’ machines, enabling

unauthorized access and control of system resources, applications,

and data [20]. Moreover, code-injection attacks have become

more and more sophisticated, including techniques such as return-

oriented programming, heap spraying, and format string attacks.

A shellcode is a list of machine code instructions, to be

loaded in a vulnerable application at runtime. The classic way to

develop shellcodes is to write them using the assembly language,

and by using an assembler to turn them into opcodes (operation

codes, i.e., a machine language instruction in binary format,

to be decoded and executed by the CPU) [21], [22]. Listing 1

shows an example of shellcode2 in assembly for the 32-bit Intel

Architecture, which runs the /bin/sh command to spawn a

shell on the Linux OS. Note that the shellcode strictly depends

on the OS and the CPU architecture, thus it must be tailored for

the target system. Listing 1 also shows the shellcode as binary

opcodes (lines 17-18), where each \x followed by two hex digits

represents one byte of the payload [23]. Shellcodes typically

range between few bytes to hundreds of bytes. Other objectives

of shellcodes include killing or restart other processes, causing

a denial-of-service (e.g., a fork bomb), leaking secret data, etc.

The plain shellcodes contain explicit information of the

malicious action the attacker aims to take. For example, the

shellcode in Listing 1 contains the values 68 73 2f 2f and

6e 69 62 2f, which are the hexadecimal representation of the

strings //sh and /bin in reverse order (since the target CPU is

little-endian). Therefore, it is easy for AV and IDS software

to block the execution of this shellcode. To overcome security

2Shellcode collected from https://www.exploit-db.com/shellcodes/47890

protections, exploit writers adopt encoding techniques, which

convert the original shellcode into a new, functionally equivalent

one, but more difficult to block [24], [25]. Encoders are programs

written in a high-level language, most often in Python (e.g.,

over the 80% of the encoders on the popular Exploit Database

[26] are developed in Python language), and apply mathematical

operations (as in symmetric key cryptography) on the binary

opcodes to generate new ones, and which append additional

opcodes for the decoder. Afterward, when this attack payload

is injected and executed by the victim system, it decodes itself

to obtain the original shellcode. Since the decoder is part of

the attack payload, it is developed using the assembly language.

Encoders and decoders are not just used to obfuscate the

original payload from AV and IDS. Encoding schemes are used

also to eliminate “bad bytes” from the payload. For example,

since a null byte is considered as a terminator character for

strings, all the bytes of the payload following the null bytes

are not processed. Accordingly, the shellcodes must be null-free

or zero-free, i.e., they can not contain any null bytes. Moreover,

most vulnerabilities impose restrictions on the quantity of data

that can be injected. Therefore, another use of encoders is to

optimize the shellcode to decrease its size.

As security attacks and defenses evolve with technology,

security researchers have been developing new encoding

techniques. Among recent studies, Geczi et al. [27] described

a technique that converts x86 assembly code, such that

the resulting object code only contains printable characters.

Similarly, Patel et al. [28] developed a new encoding scheme

to produce printable shellcodes but in a more compact and

reduced size. The penetration testing tool Metasploit [29] also

provides a method, named sub encoder, to convert any sequence

of binary data into ASCII characters that, when interpreted by

an Intel CPU, will decode the original sequence and execute it.

III. PROPOSED METHODOLOGY

The EVIL approach leverages neural machine translation

(NMT) to automatically generate exploits. A neural machine

translation system is a neural network that maximizes the

conditional probability p(a|e) of translating a source sentence

e=<e1,...,eTe
>, with length |e|=Te, into a target sentence

a=<a1,...,aTa >, with length |a|=Ta. Following prior work

(e.g., [30]), we build a neural network that directly models

the conditional probability p(a|e) of translating an intent, in

natural language into a code snippet in Python or assembly

language. As a simple example, consider the sequence of English

tokens [‘add’, ‘the’, ‘value’, ‘4’, ‘to’, ‘the’,
‘eax’, ‘register’] as e, and the sequence of assembly

tokens [‘add’, ‘eax’, ‘,’, ‘4’] as a, with |e|=8 and

|a|=4. The general architecture of an NMT system consists of an

encoder, which computes a representation s for each source token,

and a decoder, which generates tokens in the target language3.

To support automatic code generation, neural machine

translation is usually accompanied by data processing steps

3In this section, we use the terms encoder and decoder to refer to deep
learning architectures. In other sections, the terms refer to parts of an exploit.
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Fig. 1. Architecture diagram of EVIL demonstrating a six-step process: 1) Pre-Processing of the samples in the training data, 2) Training of the neural machine
translation system with the processed training data, 3) User stating the operation in the English language (i.e., the intent), 4) Pre-processing of the intent, 5)
NMT models generating the code snippet from the processed intent, and lastly, 6) EVIL output after post-processing applied to the generated code snippet.

[31]–[33]. These phases strongly depend on the specific source

and target languages to translate (in our case, exploit code from

the English language). The EVIL approach applies steps of

processing both before the NMT task (pre-processing), to train

the NMT model and prepare the input data, and after the NMT

task (post-processing), to improve the quality and the readability

of the code in output. Figure 1 shows the architecture of our

approach, along with an example of inputs and outputs at each

step, further discussed in the following.

A. Pre-Processing

Pre-processing starts with stopwords filtering, i.e., by

removing a set of custom compiled words (e.g., the, each,
onto), in order to include only relevant data for machine

translation. This phase splits the input sequence of natural

language tokens e1, ...,eTe and code a1, ...,aTa in a process

called tokenization. The tokenizer converts the input strings into

their byte representations, and learns to break down a word into

subword tokens (e.g., lower becomes [low,er]. We tokenize

intents using the nltk word tokenizer [34] and snippets using the

Python tokenize package [35]. We then use regular expressions

to identify hexadecimal values (e.g., 0xbb), strings that fall

between quotation marks, squared brackets, variable name

notations (e.g., variableName, variable_name), follow

underscore notation (e.g., next_cycle), function names,

mathematical expressions, and byte arrays (e.g., \xe3 \xa1).

We also use WordNet [36] to recognize alphabet strings that

do not belong to the English language.

Consider the natural language intent shown in Figure 1 (step

3 ), which contains the phrase jump to next_cycle. One task

for code generation systems is to prevent non-English tokens (e.g.,

next_cycle) from getting transformed during the learning

process. This process is known as Standardization. Extant code

generation systems address this problem with copying mecha-

nisms in neural network architectures [37], which are inspired by

human memorization. To perform standardization, EVIL provides

a novel Intent Parser tailored for working with exploit software.

The goal of the Intent Parser is to take input in natural language

(i.e. intents) and to provide as output a dictionary of standardiz-

able tokens, such as specific values, label names, and parameters.

All tokens selected by the Intent Parser are passed to the

Standardizer. The standardization process simply replaces the

selected token in both the intent and snippet with var#, with #
denoting a number from 0 to |l|, and |l| is the number of tokens

to standardize. In the step 4 in Fig. 1, the intent parser identifies

dl, 0xbb, and next_cycle as standardizable tokens and

standardizes them to var0, var1, and var2 respectively

(based on order of appearance in the intent). To prevent the

standardization of unimportant tokens, we compile a dictionary

of 45 assembly keywords (e.g., register, address, byte),

and 38 Python keywords (e.g., for, class, import) as

non-standardizable tokens. After the standardization process,

both the original token and its standardized counterpart (var#)

are stored in a dictionary to be used during post-processing.

Lastly, we create Embeddings, i.e., a mapping of each token

(in both the intent and code snippet sequences) into a numerical

id representation in order to capture their semantic and syntactic

information, where the semantic information correlates with

the meaning of the tokens, while the syntactic one refers to

their structural roles [38].

B. NMT Models

To perform neural machine translation (step 5 ), we consider

two standard architectures: Seq2Seq, and CodeBERT.

Seq2Seq. Seq2Seq is a common model used in a variety

of neural machine translation tasks. Similar to the encoder-

decoder architecture with attention mechanism [39], we use a

bi-directional LSTM as the encoder, to transform an embedded
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intent sequence e= |e1,...,eTe
| into a vector c of hidden states

with equal length. Within the bidirectional LSTM encoder, each

hidden state ht corresponds to an embedded token et. The

encoder LSTM is bidirectional, which means it reads the source

sequence e ordered from left to right (from e1 to eTe
) and from

right to left (from eTe
to e1). To combine both directions, each

hidden state for the bidirectional LSTM encoder is computed

by concatenating the hidden states of the forward and backward

orders at token t as follows:

ht=[f(et,ht−1);f(et,ht+1)]; (1)

where ht denotes a hidden state at time step t, et denotes an

embedded intent token t, and f denotes an LSTM non-linear

function. Next, the model generates a context vector ct for each

of the embedded inputs. We use the Bahdanau-style attention

mechanism [39], which uses soft attention by representing

ct as the weighted sum of the encoder hidden states, as

ct =
∑Te

i=1αt,i hi, where the scores αt,i are parametrized by

a feed-forward multi-layer perceptron neural network. Since

the encoder uses a bidirectional LSTM, each hidden state hi

is aware of the context on both ends.

The decoder generates one target token at a time by decom-

posing the conditional probability p(a|e) into
∏Ta

t=1p(at|a<t,s),
where at is an individual output token. The target token are gener-

ated by combining the LSTM decoder state st−1, the previously-

generated token at−1, and the context vector ct as follows:

st=f(at−1,st−1,c)

p(at|a<t,e)=g(at−1,st,c)
(2)

where g is a non-linear function, and a<t denotes previous

predicted tokens {a1,...,at−1}.
CodeBERT. CodeBERT [40] is a large multi-layer bidirec-

tional Transformer architecture [41]. Like Seq2Seq, the Trans-

former architecture is made up of encoders and decoders. Code-

BERT has 12 stacked encoders and 6 stacked decoders. Compared

to Seq2Seq, the Transformer architecture introduces mechanisms

to address key issues in machine translation: (i) the translation

of a word depends on its position within the sentence; (ii) in the

target language, the order of the words (e.g., adjectives before

a noun) can be different from the order of words in the source

language (e.g., adjectives after a noun); (iii) several words in the

same sentence can be correlated (e.g., pronouns). These problems

are especially important when dealing with long sentences.

The Transformer architecture first refines the input embedding

of each token, by combining it with a positional encoding vector.

The architecture has a different positional encoding vector for

each position of the sentence, in order to enrich the input

embedding with positional information. Then, the transformed

input embeddings sequentially go through the stacked encoder

layers, which all apply a self-attention process. The self-attention

further refines an input embedding, by combining it with the other

input embeddings for the sentence in a weighted way, in order to

account for correlations among the words (e.g., to get information

for a pronoun from the noun it refers to, the input embedding

of the noun is given a large weight). The weights are given by:

Attention(Q,K,V )=softmax(
QKT

√
dk

)V (3)

where the vectors Q (query), K (key), and V (value) are

learned during training. To further improve this mechanism,

the Transformer architecture uses multi-headed attention, where

input embeddings are first multiplied with three learned weight

matrices WQ
i , WK

i , and WV
i (where i is a “head”), then

combined with vectors Q, K, and V . Finally, the results from

all heads are concatenated and multiplied with an additional

weights matrix WO. Multi-headed attention enables the neural

network to correlate different parts of the sequence in different

ways (e.g., short-term vs long-term correlations).

MultiHead(Q,K,V )=Concat(head1,...,headh)W
O (4)

Different from Seq2Seq, CodeBERT also comes with a pre-
trained neural network model, learned from large amounts of

code snippets and their descriptions in the English language, and

covering six different programming languages, including Python,

Java, Javascript, Go, PHP, and Ruby. The goal of pre-training is

to bootstrap the training process, by establishing an initial version

of the neural network, to be further trained for the specific task

of interest [42]–[45]. This approach is called transfer learning. In

our case, we fine-tune the CodeBERT model to translate English

to Python and assembly, using our exploit dataset (see § IV).

CodeBERT undergoes unsupervised pre-training using two

optimization objectives: a masked language modeling (MLM)

objective [44] and a replaced token detection (RTD) objective

[46]. These two objectives are combined into one loss function

min
θ

LMLM (θ)+LRTD(θ).

The MLM objective selects random positions within the intent

word sequence e and code snippet sequence c, and replaces

them with a special mask token [MASK]. The objective of

this pre-training is to predict the original tokens that were

replaced with [MASK]:

LMLM (θ)=
∑

i∈me
⋃
mc

−logpD1(xi|emasked,cmasked) (5)

where pD1 is the model that predicts the masked tokens, me

and mc are the randomly selected positions, x= {e,c} is the

original intent-snippet pair, and emasked and cmasked are the

masked intent and snippet.

In the RTD objective, both the intent and snippet are

corrupted by replacing the original token with incorrect ones,

and the trained model is used as a discriminator (denoted as

pD2 ) to detect whether a token is original or replaced. To this

purpose, CodeBERT uses two generator models (similarly to

Generative Adversarial Networks), one for intents pGe and one

for snippets pGc . The generator models are trained to generate

plausible token fits for the masked tokens emasked and cmasked.

The RTD objective is defined as follows:

324

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on July 19,2022 at 10:24:16 UTC from IEEE Xplore.  Restrictions apply. 



LRTD(θ)=
∑
i=1

|e|+|c|(
σ(i)logpD2(xcorrupt,i)+

(
1−σ(i)

)

(
1−logpD2(xcorrupt,i)

))

σ(i)=
{
1, if xcorrupt

i =xi

0, otherwise.
(6)

C. Post-Processing

Post-processing is an automatic post-editing process applied

during decoding in the translation process. The Destandardizer
uses the slot map dictionary generated by the Intent Parser to

replace all keys in the standardized intent (i.e., var0, var1
and var2) with the corresponding memorized values (i.e., dl,

0xbb, and next_cycle).

The generated snippet is then further post-processed using

regular expressions (Code Snippet Cleaning). This operation

includes the removal of (any) extra-spaces in the output, such as

between operations and operands, between byte string identifiers

and the byte strings, between objects and method calls in

Python, etc., and the removal of (any) extra-backslashes in

escaped characters (e.g., \\n). Also, during the post-processing,

the newline characters \n are replaced with new lines to

generate multi-line snippets. As a final step, snippet tokens are

joined to form a complete snippet (step 6 ).

D. Implementation Details

We implement the Seq2Seq model using xnmt [47]. We use

an Adam optimizer [48] with β1=0.9 and β2=0.999, while the

learning rate α is set to 0.001. We set all the remaining hyper-

parameters in a basic configuration: layer dimension = 512, layers

= 1, epochs (with early stopping enforced) = 200, beam size = 5.

Our CodeBERT implementation uses an encoder-decoder

framework where the encoder is initialized to the pre-trained

CodeBERT weights, and the decoder is a transformer decoder.

The decoder is composed of 6 stacked layers. The encoder

follows the RoBERTa architecture [43], with 12 attention heads,

hidden layer dimension of 768, 12 encoder layers, 514 for the

size of position embeddings. We use the Adam optimizer [48].

The total number of parameters is 125M. The max length of

the input is 256 and the max length of inference is 128. The

learning rate α=0.00005, batch size = 32, beam size = 10, and

assembly train steps = 2800, and Python train steps = 18000.

IV. MODEL TRAINING

To automatically generate Python and assembly programs

used for security exploits, we curated a large dataset for feeding

NMT techniques. We collected exploits from publicly available

databases [26], [49], public repositories (e.g., GitHub), and

programming guidelines. In particular, we focused on exploits

targeting Linux, the most common OS for security-critical net-

work services, running on IA-32 (i.e., the 32-bit version of the x86

Intel Architecture). The dataset consists of two parts: (i) a Python

dataset, which contains Python code used by exploits to encode

TABLE I
DATASETS STATISTICS

Statistic Encoder Dataset Decoder Dataset

Dataset size 15,540 3,715
Unique Snippets 14,034 2,542
Unique Intents 15,421 3,689

Unique tokens (Snippets) 9,511 1,657
Unique tokens (Intents) 10,605 1,924
Avg. tokens per Snippet 11.90 4.75
Avg. tokens per Intent 14.90 9.53

the shellcode, and (ii) an assembly dataset, which includes shell-

code and decoders to revert the encoding. A sample in the dataset

consists of a snippet of code from these exploits and their cor-

responding description in the English language. The datasets are

processed though the operations described in § III-A, and used to

train the NMT models, as shown in in Fig. 1 (steps 1 and 2 ).

To deal with the ambiguity of natural language, multiple

authors worked together to describe curated snippet intentions

in English. The building process of the datasets is similar to

established corpora in the NMT field (e.g., the authors of the

widespread Django-dataset [50] hired one engineer to create

the corpus). To mitigate bias, we reused the comments written

by developers of the collected programs; when not available,

we followed the style of books/tutorials on assembly/Python

and shellcode programming.

Table I summarizes the statistics of both datasets, including

the size (i.e., the unique pairs of intents-snippets), the unique

lines of code snippets, the unique lines of natural language

intents, the unique number of tokens (i.e., words), and the

average number of tokens per snippet and intent.

A. Python Data

Our first dataset contains samples to generate Python code

for security exploits. In order to make the dataset representative

of real exploits, it includes code snippets drawn from exploits

from public databases. Differing from general-purpose Python

code found in previous datasets [50], the Python code of real

exploits entails low-level operations on byte data for obfuscation

purposes (i.e., to encode shellcodes). Therefore, real exploits

make extensive use of Python instructions for converting data

between different encoders, for performing low-level arithmetic

and logical operations, and for bit-level slicing, which cannot

be found in the previous general-purpose Python datasets.

In total, we built a dataset that consists of 1,114 original

samples of exploit-tailored Python snippets, and their

corresponding intent in the English language. These samples

include complex and nested instructions, as typical of Python

programming. Table II shows examples of such instructions. In

order to perform more realistic training and for a fair evaluation,

we left untouched the developers’ original code snippets and did

not decompose them. We provided English intents to describe

nested instructions altogether.

In order to bootstrap the training process for the NMT model,

we include in our dataset both the original, exploit-oriented

snippets and snippets from a previous general-purpose Python
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TABLE II
EXAMPLES OF ENCODING INSTRUCTIONS IN PYTHON

Code Snippet English Intent

sb =
int(hex(leader)[3:],16)

Convert the value
of leader to hexadecimal, then slice
it at index 3, convert it to an int16
and set its value to the variable sb

val2 = int(
chunk[i].encode(’hex’),

16 ) ˆ xor_byte

val2 is the result
of the bitwise xor between the

integer base 16 of the element i of
chunk encoded to hex and xor byte

dataset. This enables the NMT model to generate code that can

mix general-purpose and exploit-oriented instructions. Among

the several datasets for Python code generation, we choose the

Django dataset [50] due to its large size. This corpus contains

14,426 unique pairs of Python statements from the Django Web

application framework and their corresponding description in En-

glish. Therefore, our final dataset contains 15,540 unique pairs of

Python code snippets alongside their intents in natural language.

B. Assembly Data

We built our assembly dataset on top of our previous work

[51], in which we released a dataset for automatically generating

assembly from natural language descriptions. This dataset

consists of 3,200 assembly instructions, commented in English

language, which were collected from shellcodes for IA-32 and

written for the Netwide Assembler (NASM) for Linux [52]. In

order to make the data more representative of the code that we

aim to generate (i.e., complete exploits, inclusive of decoders
to be delivered in the shellcode), we enriched the dataset with

further samples of assembly code, drawn from the exploits

that we collected from public databases. Differently from the

previous dataset, the new one includes assembly code from

real decoders used in actual exploits. The final dataset contains

3,715 unique pairs of assembly code snippets/English intents.

To better support developers in the automatic generation of

the assembly programs, we looked beyond a one-to-one mapping

between natural language intents and their corresponding code.

Therefore, the dataset includes 783 lines (∼21% of the dataset)

of multi-line intents, i.e., intents that generate multiple lines

of assembly code, separated by the newline character \n. These

multi-line snippets contain a number of different assembly

instructions that can range between 2 and 5. For example, the

copy of the ASCII string “/bin//sh” into a register is a typical

operation to spawn a shell, which requires three distinct assembly

instructions, as shown by the lines 6-7-8 of Listing 1: push the

hexadecimal values of the words “/bin” and “//sh” onto the stack

register before moving the contents of the stack register into

the destination register. Further examples of multi-line snippets

include conditional jumps, tricks to zero-out the registers without

generating null bytes, etc. Table III shows two further examples

of multi-line snippets with their natural language intents.

TABLE III
EXAMPLES OF DECODING INSTRUCTIONS IN ASSEMBLY

Code Snippet English Intent

xor
bl, 0xBB \n jz formatting

\n mov cl, byte [esi]

Perform the xor between
BL register and 0xBB and jump

to the label formatting if the result
is zero else move the current byte
of the shellcode in the CL register.

xor ecx, ecx \n mul ecx Zero out the EAX and ECX registers.

V. EXPERIMENTAL EVALUATION

This section presents an extensive evaluation of our approach

to generating exploits from natural language descriptions. We

separate the evaluation of Python code generation (i.e., the

encoding part of the exploit) and assembly code generation

(i.e., the decoding part of the exploit). Thus, we use distinct

test sets for evaluating Python encoders and assembly language

decoders, respectively. We trained two distinct models, using

respectively the Python and the assembly dataset. The models

adopt the same architecture.

Differently from previous work in code generation tasks [7],

[8], [15]–[17], [53], we did not randomly sample individual

instructions from the dataset when dividing the data between

training and test set. Indeed, since the ultimate goal of the

programmer is to generate exploits in their entirety, we took all

instructions from an exploit as a whole. Our test sets cover 20
different exploits (i.e., 20 Python programs, and 20 assembly

programs). We exclude print statements in the Python source

code since they are not actually needed for the exploit. The

exploits and their encoding/decoding schemes have varying

complexity and were developed by different programmers for

different purposes. The average number of lines is 23.4 (median

is 19) for the Python programs and 26.4 (median is 24) for the

decoders in assembly language. The pairs intents-snippets in the

test set are unique and are not included in the training/dev sets.

Further information on the test set is described in Appendix4.

Next, we present the experimental results using automated

metrics (§ V-A) and manual metrics (§ V-B). In § V-C, we

evaluate the approach at generating exploits in their entirety.

In § V-D, we evaluate the computational cost.

A. Automatic Evaluation

We evaluate the translation ability of both models described

in § III-B, i.e., Seq2Seq with attention mechanisms and

CodeBERT. Moreover, since the Intent Parser plays a critical

role in our approach, we evaluate the ability of the models with

and without the use of the Intent Parser, in order to estimate

its contribution. The configuration without the Intent Parser

still adopts the pre/post-processing pipeline (stopwords filtering,

tokenization, embeddings, etc.) but avoids standardization.

Automatic evaluation metrics are commonly used in the field

of machine translation. They are reproducible, easy to be tuned,

and time-saving. The BiLingual Evaluation Understudy (BLEU)

4https://github.com/dessertlab/EVIL
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TABLE IV
AUTOMATED EVALUATION OF THE TRANSLATION TASK. BOLDED VALUES ARE THE BEST PERFORMANCE. IP= INTENT PARSER

Dataset Model BLEU-1
(%)

BLEU-2
(%)

BLEU-3
(%)

BLEU-4
(%) ACC (%)

Python

Seq2Seq no IP 72.34 62.55 56.88 52.2 31.2
Seq2Seq with IP 86.92 83.68 81.42 79.69 45.33
CodeBERT no IP 79.23 74.12 69.84 65.76 48.00

CodeBERT with IP 89.22 86.78 84.94 83.50 56.00

Assembly

Seq2Seq no IP 35.83 26.1 21.38 17.69 25.25
Seq2Seq with IP 88.38 86.37 85.51 85.05 40.98
CodeBERT no IP 33.42 28.39 25.38 22.72 45.9

CodeBERT with IP 88.21 85.53 84.05 82.99 45.9

[54] score is one of the most popular automatic metric [8], [50],

[55], [56]. This metric is based on the concept of n-gram, i.e.,

the adjacent sequence of n items (e.g., syllables, letters, words,

etc.) from a given example of text or speech. In particular, this

metric measures the degree of n-gram overlapping between the

strings of words produced by the model and the human translation

references at the corpus level. BLEU measures translation quality

by the accuracy of translating n-grams to n-grams, for n-gram of

size 1 to 4 [57]. The Exact match accuracy (ACC) is another auto-

matic metric often used for evaluating neural machine translation

[7], [8], [15], [16]. It measures the fraction of the exact match

between the output predicted by the model and the reference.

Table IV shows the best results for each model in terms of

BLEU scores and accuracy. For both the Python and assembly

datasets, the results point out that the Intent Parser notably

increases the performance of the translation task in Python and

assembly. Moreover, CodeBERT outperforms the performance

of the Seq2Seq with respect to all metrics for the Python

dataset. In the case of the assembly dataset, the performance

of the two models is comparable.

B. Human Evaluation

We further investigate the performance of the translation

task by assessing the deeper linguistic features [58], i.e., the

syntax and the semantic of the code snippets predicted by

the models. These features allow us to properly give credit to

semantically-correct code that fails to match the reference one

(e.g., jz label and je label are semantically identical

code snippets, even if they use different instructions), or to

provide information whether the generated code would compile

or not. Accordingly, we define two new metrics: a generated

output snippet is considered syntactically correct if it is

correctly structured in the grammar of the target language (i.e.,

Python or assembly) and compiles correctly. The output is

considered semantically correct if the snippet is an appropriate

translation in the target language given the intent description.

The semantic correctness implies syntax correctness, while a

snippet can be syntactically correct but semantically incorrect.

Of course, the syntactic incorrectness also implies the semantic

one. We evaluated these metrics through manual inspection.

As a simple example, consider the intent res2 is the result
of the bitwise and operation between res2 and val1. If the

TABLE V
HUMAN EVALUATION OF THE TRANSLATION TASK. BOLDED VALUES ARE THE

BEST PERFORMANCE (∗= P<0.05). IP= INTENT PARSER

Dataset Model Syntactic Cor-
rectness (%)

Semantic Cor-
rectness (%)

Python
Seq2Seq
with IP 88.53 50.13

CodeBERT
with IP 93.60* 67.73*

Assembly
Seq2Seq
with IP 90.16 56.36

CodeBERT
with IP 87.05 61.90*

model generates res2 = res2 & val1, then the snippet is

considered semantically and syntactically correct. If the model

generates the Python instruction res2 = val2 | val1, then

the snippet is considered syntactically correct for the Python

syntax, but semantically incorrect both because the bitwise

operation is not the intended one (i.e., the or instead of the and),

and the operands are not the same specified in the intents (i.e.,

val2 instead of res2). If the model generates the instruction

res2 = res2 _ val1, then the snippet is considered also

syntactically incorrect, since the symbol _ is not a valid binary

operator in Python. Notice that this type of evaluation is rigorous.

Even if a single token of the generated snippet (e.g., an operation,

a variable/operand, a parenthesis, etc.) is not syntactically

(semantically) correct, then the whole snippet is considered

syntactically (semantically) incorrect. In the case of the multi-

line snippets of the assembly dataset, we compute the syntactic

(semantic) correctness as the ratio number of syntactically

(semantically) correct single snippets over the total number

of snippets composing the multi-lines statement (c.f. § VI-B).

We evaluated both types of correctness achieved by Seq2Seq

and CodeBERT on the entire test-sets (all 20 encoders/decoders).

For the evaluation, we were supported by the Python 2 and the

NASM compiler, respectively for Python and assembly code.

Since the previous analysis showed that the Intent Parser notably

increases the performance of translation, we evaluated the

syntactic and semantic correctness only when using the Intent

Parser. Table V shows the percentage of the syntactically and
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semantically correct snippets generated by the models. The table

shows that, for the Python programs, CodeBERT with IP provides

a higher percentage of both syntactically and semantically correct

snippets. We conducted a paired-sample T-test to compare the

syntactic correctness and the semantic correctness values of the

code snippet pairs predicted by the two NMT models (given the

same intents). We found that the differences between CodeBERT

and the Seq2Seq are statistically significant for both metrics

with p<0.05. For the assembly programs, Seq2Seq provides

a higher percentage of syntactically correct snippets, but these

differences are not statistically significant. Again, CodeBERT

outperforms Seq2Seq in the semantic correctness (p<0.05).

These findings highlight that CodeBERT predicts the highest

percentage of code snippets that are semantically equivalent

to the English intent. It is interesting that, differently from

the Seq2Seq, this model provides better performance when

applied to the Python dataset. We attribute these differences

to the pre-training of the model, which benefits from knowledge

from six high-level programming languages, including Python.

Finally, we investigated the difference between the percentage

of syntactic correctness and the semantic one. We found that

most of the semantically incorrect predictions are due to wrong

labels or variable names, or the omission of parenthesis around

expressions. These errors are easy to identify and correct by

a programmer, as they would require one single edit to make

the predicted snippet semantically consistent with the intent.

These errors are further analyzed in § VI.

According to these results, the NMT approach can correctly

translate an individual intent with high likelihood, and the

incorrect translations are still close to being correct. These

results support the use of the NMT approach as a way for

developers to look up code snippets that they could not recall

or that are not confident yet to develop themselves, getting a

close-to-correct snippet that they can use with little effort.

C. Whole-exploit evaluation

The ultimate goal of the programmer is to generate entire

software exploits. While evaluation using the manual metrics

indicates that the model can correctly generate individual

snippets with high likelihood, we do not know yet whether the

model can generate a correct exploit as a whole. Therefore, we

evaluated the ability of the approach to generate semantically

and syntactically correct code for entire software exploits (i.e.,

all of the lines of code in the programs), using two new metrics.

Let ni
t be the the number of total lines of the i-th program

in the test set (i ∈ [1, 20]). Let also consider ni
syn as the

number of automatically-generated snippets for the i-th program

that are syntactically correct, and ni
sem as the number of

automatically-generated snippets that are semantically correct.

For every program of the test set, we define the syntactic
correctness of the program i as the ratio ni

syn/n
i
t, and the

semantic correctness of the program as the ratio ni
sem/ni

t.

Both metrics range between 0 and 1.

Therefore, ∀i ∈ [1,20], we computed the values ni
syn and

ni
sem for Python and assembly programs. We performed this

analysis with CodeBERT with IP since it showed the best
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Fig. 2. Distribution of the syntactic correctness of the programs.
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Fig. 3. Distribution of the semantic correctness of the programs.

performance for both datasets in the human evaluation (§ V-B).

We found that the average syntactic correctness over all the

programs of the test set is ∼96% for the Python programs

and ∼93% for the assembly programs. Similarly, we estimated

the average semantic correctness, which is equal to ∼76% and

∼81% for Python and assembly programs, respectively. The

box-plots in Fig. 2 and Fig. 3 summarize the results.

Despite our conservative evaluation, the approach is able

to generate 12 Python programs and 6 assembly programs

fully composed by syntactically correct snippets (i.e., the

ni
syn/n

i
t = 100%). However, this does not imply that the

programs are also executable. For example, the assembly instruc-

tion jz shellcode is syntactically correct, but if the label

shellcode is not defined, then the program would not compile.

Therefore, we evaluated how many programs can be compiled,

finding that the 50% of syntactically correct programs are also

compilable and executable. Furthermore, one Python program and

one assembly program are fully composed of semantically correct

snippets (i.e., ni
sem/ni

t=100%) and, therefore, implement the

original encoding and decoding schemes. We interpret these

results as a promising first research step towards automatically

coding software exploits from natural language intents.

D. Computational Time

We performed our experiments on a Linux OS running on

a virtual machine. Seq2Seq utilized 8 CPU cores and 8 GB
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TABLE VI
ILLUSTRATIVE EXAMPLES OF CORRECT OUTPUT.

Dataset Natural Language Intent Ground Truth Model Output

Python

Take the absolute
value of subfs then convert subfs to an integer, then cast
to a hexadecimal, slice the variable rev suplx between
the indicies 0 and 2 then cast rev suplx to the type int16,

store the value of the summation in the variable xxx

xxx = hex(int(abs(subfs))
+ int(rev_suplx[0:2],16))

xxx = hex(int(abs(subfs))
+ int(rev_suplx[0:2],16))

Append 0xAA to the string encode encode += ‘0xAA’ encode += ‘0x%02x’%170

Assembly

Jump short
to decode if al is not equal to cl else jump to shellcode.

cmp al, cl \n jnz short
decode \n jmp shellcode

cmp al, cl \n jne short
decode \n jmp shellcode

Perform the xor between
the current byte of the shellcode and the dl register. xor byte [esi], dl xor byte [esi], dl

TABLE VII
ILLUSTRATIVE EXAMPLES OF INCORRECT OUTPUT. THE PREDICTION ERRORS ARE RED/BOLD.����SLASHED TEXT REFERS TO OMITTED PREDICTIONS.

Dataset Natural Language Intent Ground Truth Model Output

Python

Return the result of bitwise left shift of n by rotations
bitwise and with mask value bitwise or n bitwise

right shift by the subtraction of rotations from width

return ((n<<rotations)
& mask_value) |

(n >> (width − rotations))

return (�(n<<rotations�)
& bitwise�) |

�(n >> �(width − rotations�))
Convert the

value of leader to hexadecimal, then slice it at index 3,
convert it to an int16 and set its value to the variable sb

sb
= int(hex(leader)[3:],16)

sb
= int(hex(leader)[3:],32)

Assembly

Zero out the ecx
register and move 25 in the lower 8 bits of the register. xor ecx, ecx \n mov cl, 25 xor ecx, ecx \n mov al, 25

In the decode
function jump to lowbound label if the current byte

of the shellcode is lower than 0x7 else subtract 0x7 from
the byte of the shellcode and jump to common commands

decode:
\n cmp byte [esi], 0x7 \n jl
lowbound \n sub byte [esi],
0x7 \n jmp common_commands

decode: \n cmp byte
[esi], 0x7 \n jl lowbound

��\n ����������
sub byte [esi], 0x7

\n jmp common_commands

RAM. CodeBERT utilized 8 CPU cores, 16 GB RAM, and 2

GTX1080Ti GPUs.

The computational time needed to generate the output

depends on the settings of the hyper-parameters and the size

of the dataset. On average, the training time of the Seq2Seq

model is ∼500 minutes for the Python dataset and ∼60 minutes

for the assembly dataset, while CodeBERT requires for the

training in average ∼220 minutes for Python and ∼25 minutes

for the assembly dataset. In total, we performed 50 different

experiments for a total computational time of ∼150 hours.

Once the models are trained, the time to predict the output is

below 1 second and can be considered negligible.

VI. QUALITATIVE ANALYSIS

In this section, we present a qualitative analysis using

cherry-picked examples from our test sets to highlight both

successful prediction cases and failed ones.

A. Successful Examples

Table VI shows four cases of success predictions for both

datasets. The first row demonstrates our approach’s ability to gen-

erate a difficult Python snippet from a nested natural language in-

tent without any errors. Indeed, the predicted output contains the

correct variable name subfs, rev_suplx, and xxx with the

appropriate functions hex, int, abs indexed in the right order

with the correct parameters. The second row shows an example

of implicit model knowledge. The model is able to append 0xAA
by converting the value 170, the hexadecimal value of 0xAA,

to hexadecimal and appending it to the string variable encode.

The last two rows of the table show the ability of the model in

generating challenging assembly instructions. The third row high-

lights both the ability of the Intent Parser in identifying all the reg-

isters’ name (i.e., AL and CL), and the labels (i.e., decode and

shellcode), and the ability of the model to perform the right

translation of the order in the if-then-else statements described

in the English intent. The last row is an interesting example of

implicit model knowledge. Indeed, even if it is not stated in the in-

tent, the model is able to properly predict EDI as the destination

register since it is typically used to store the encoded shellcodes.

B. Failure Examples

Table VII shows four relevant examples of failure cases.

We observe nested instructions within the intent in the Python

examples. In the first row, the intent implies the order of

operations signified by parenthesis in the ground truth snippet.

While the model correctly generates all the operations in

the correct order, it does not enforce the order of operations.

The model fails to derive the implied order of operations

from the intent. It also fails to generate the correct variable

mask_value, but instead generates the intent-repeated

token bitwise as a variable, likely due to bitwise being
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mentioned frequently in the intent in between operations. In

the second row, we observe the model also generates all the

operands and variables correctly, however it fails to generate

the correct parameter 16 to the integer conversion operation.

The example in the third row illustrates an example of failure

due to a lack of implicit knowledge. The natural language

intent does not mention to the CL register but implicitly refers

to it (lower 8 bits of the ECX register). Therefore, the output

results in a syntactically correct but semantically incorrect

prediction. The last row shows a long intent that describes an

entire function. The model is able to properly predict four of

the five assembly instructions composing the decode function.

However, it misses the sub operation after the conditional

jump jl. In this case, the semantic correctness is equal to 0.8
(4 out of 5 semantically correct snippets).

VII. RELATED WORK

The task of exploit generation via automatic techniques has

been addressed in several ways. ShellSwap [59] is a system that

generates new exploits based on existing ones, by modifying the

original shellcode with arbitrary replacement shellcode. Hu et
al. [60] developed a novel approach to construct data-oriented

exploits through data flow stitching, by composing the benign

data flows in an application via a memory error. They built

a prototype attack generation tool that operates directly on

Windows and Linux x86 binaries. Avgerinos et al. [1] developed

an end-to-end system for automatic exploit generation (AEG) on

real programs by exploring execution paths. Given the potentially

buggy program in source form, their proposal automatically

looks for bugs, determines whether the bug is exploitable, and

produces a working control-flow hijack exploit string. SemFuzz
[61] extracts necessary information from non-code text related to

a vulnerability, using natural language processing and a semantics-

based fuzzing process, in order to discover and trigger deep bugs.

Chen et al. [62] presented techniques to find out the gadgets,

i.e., the basic building block in Jump Oriented Programming

(JOP), and showed these gadgets are Turing complete. They

implemented an automatic tool able to generate JOP shellcodes.

Ding et al. [63] proposed a reverse derivation of a transformation

method driven by state machines indicating the status of data

flows, in order to transform the original shellcode into printable

Return Oriented Programming (ROP) payload. Chainsaw [64]

is a tool for analyzing web applications and generating injection

exploits. The tool performs static analysis and defines a model

of the application behavior to generate injection exploits, by

leveraging application workflow structures and database schemes.

Brumley et al. [65] proposed an approach for Automatic Patch-

based Exploit Generation (APEG). Starting from a program and

its patched version, the approach identifies the security checks

added by the patch and automatically generates inputs to fail the

checks. Huang et al. [66] introduced a method to automatically

generate exploits based on software crash analysis. This method

analyzes software crashes using a symbolic failure model, to

generate exploits from crash inputs and existing exploits for

several types of applications. Xu et al. [67] developed a tool to

find buffer overflow vulnerabilities in binary programs and auto-

matically generate exploits using a constraint solver. Vulnerability

detection is achieved through symbolic execution and the exploit

generated by this tool can bypass different types of protection.

Our work is radically different from these previous ones.

First, our approach uses natural language statements to generate

exploits. Second, we adopt neither a static nor dynamic program

analysis approach (e.g., fuzzing, program synthesis, etc.), but

a statistical, data-driven approach. Therefore, our work can be

considered complementary to these previous solutions, with

different use cases.

VIII. ETHICAL CONSIDERATIONS

Offensive security is a sub-field of security research that

tests security measures from an adversary or competitor’s

perspective, employing ethical hackers to probe a system for

vulnerabilities [68], [69]. Our work aims to automate exploit

generation, in order to explore critical vulnerabilities before they

are exploited by attackers [1]. Indeed, our work simplifies the

process of coding the exploits to surface security weaknesses

within the software and can provide valuable information about

the technical skills, degree of experience, and intent of the

attackers. With this information, it is possible to implement

measures to detect and prevent attacks [3].

IX. CONCLUSION

We presented EVIL, an approach for automatic exploit

generation for security assessment purposes, using natural

language processing techniques based on neural networks. Our

approach represents the first step towards the ambitious goal

of automatically generating software exploits from natural

language. We develop and released two datasets of real exploits

in Python and assembly language to enable neural network

training and experimental evaluation. We evaluated the feasibility

of our approach, using both automated and manual metrics.

Our experiments have shown the ability of the approach in

generating software exploits from natural language descriptions

with high syntactic and semantic correctness.

The results have also revealed that, in most cases, the generated

programs do not execute correctly due to wrong labels or variable

names. Programmers can easily correct these problems, but our

goal is full automation. Therefore, future work includes the im-

provement of the post-processing phase that looks at the program

context to increase the accuracy of the program generation task.

Future work also includes the development of a single engine

that generates the encoding and decoding schemes at the same

time, without performing two separate translation tasks.
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