3,636 research outputs found

    Emergence of slow-switching assemblies in structured neuronal networks

    Get PDF
    Unraveling the interplay between connectivity and spatio-temporal dynamics in neuronal networks is a key step to advance our understanding of neuronal information processing. Here we investigate how particular features of network connectivity underpin the propensity of neural networks to generate slow-switching assembly (SSA) dynamics, i.e., sustained epochs of increased firing within assemblies of neurons which transition slowly between different assemblies throughout the network. We show that the emergence of SSA activity is linked to spectral properties of the asymmetric synaptic weight matrix. In particular, the leading eigenvalues that dictate the slow dynamics exhibit a gap with respect to the bulk of the spectrum, and the associated Schur vectors exhibit a measure of block-localization on groups of neurons, thus resulting in coherent dynamical activity on those groups. Through simple rate models, we gain analytical understanding of the origin and importance of the spectral gap, and use these insights to develop new network topologies with alternative connectivity paradigms which also display SSA activity. Specifically, SSA dynamics involving excitatory and inhibitory neurons can be achieved by modifying the connectivity patterns between both types of neurons. We also show that SSA activity can occur at multiple timescales reflecting a hierarchy in the connectivity, and demonstrate the emergence of SSA in small-world like networks. Our work provides a step towards understanding how network structure (uncovered through advancements in neuroanatomy and connectomics) can impact on spatio-temporal neural activity and constrain the resulting dynamics.Comment: The first two authors contributed equally -- 18 pages, including supplementary material, 10 Figures + 2 SI Figure

    Report of the NAFO Commission Ad hoc Working Group to Reflect on the Rules Governing Bycatches, Discards and Selectivity (WG-BDS) in the NAFO Regulatory Area Meeting

    Get PDF
    1. Opening by the Chair, Temur Tairov (Russian Federation) 2. Appointment of Rapporteur 3. Adoption of Agenda 4. Discussion of the bycatch analysis performed by Scientific Council and the Secretariat 5. Action Plan in the Management and Minimization of Bycatch and Discards 6. Other Matters a. STACTIC Intersessional Meeting, May 2017 b. WG-CR/CDAG Meeting, February and May 2017 c. NAFO Working Group on Improving Efficiency of NAFO Working Group Process 7. Recommendations to forward to the Commission 8. Adoption of Report 9. Adjournmen

    Quantifying the Drivers of Star Formation on Galactic Scales. I. The Small Magellanic Cloud

    Full text link
    We use the star formation history of the Small Magellanic Cloud (SMC) to place quantitative limits on the effect of tidal interactions and gas infall on the star formation and chemical enrichment history of the SMC. The coincident timing of two recent (< 4 Gyr) increases in the star formation rate and SMC/Milky Way(MW) pericenter passages suggests that global star formation in the SMC is driven at least in part by tidal forces due to the MW. The Large Magellanic Cloud (LMC) is the other potential driver of star formation, but is only near the SMC during the most recent burst. The poorly constrained LMC-SMC orbit is our principal uncertainty. To explore the correspondence between bursts and MW pericenter passages further, we model star formation in the SMC using a combination of continuous and tidally-triggered star formation. The behavior of the tidally-triggered mode is a strong inverse function of the SMC-MW separation (preferred behavior ~ r^-5, resulting in a factor of ~100 difference in the rate of tidally-triggered star formation at pericenter and apocenter). Despite the success of these closed-box evolutionary models in reproducing the recent SMC star formation history and current chemical abundance, they have some systematic shortcomings that are remedied by postulating that a sizable infall event (~ 50% of the total gas mass) occured about 4 Gyr ago. Regardless of whether this infall event is included, the fraction of stars in the SMC that formed via a tidally triggered mode is > 10% and could be as large as 70%.Comment: Accepted for publication in Ap

    Tempo and intensity of pre-task music modulate neural activity during reactive task performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 The Authors.Research has shown that not only do young athletes purposively use music to manage their emotional state (Bishop, Karageorghis, & Loizou, 2007), but also that brief periods of music listening may facilitate their subsequent reactive performance (Bishop, Karageorghis, & Kinrade, 2009). We report an fMRI study in which young athletes lay in an MRI scanner and listened to a popular music track immediately prior to performance of a three-choice reaction time task; intensity and tempo were modified such that six excerpts (2 intensities Ă— 3 tempi) were created. Neural activity was measured throughout. Faster tempi and higher intensity collectively yielded activation in structures integral to visual perception (inferior temporal gyrus), allocation of attention (cuneus, inferior parietal lobule, supramarginal gyrus), and motor control (putamen), during reactive performance. The implications for music listening as a pre-competition strategy in sport are discussed

    Is There an Ideological Asymmetry in the Incumbency Effect? : Evidence From U.S. Congressional Elections

    Get PDF
    The electoral advantage that incumbent legislators enjoy over challengers in the U.S. Congress has been investigated extensively in political science. Very few studies, however, have considered the role of individual differences when it comes to incumbency preferences among voters. Based on theory and research in political psychology, we hypothesized that political conservatives would exhibit stronger preferences than liberals for incumbents over challengers from the same party. Extensive analyses based on more than 150,000 voters from seven election cycles in the United States from 2006 to 2018 support this hypothesis. A significant effect of conservatism on incumbency preferences was observed in the U.S. Senate and House of Representatives, and it was not attributable to Republican Party identification. This ideological asymmetry is consistent with system justification theory and prior research linking conservatism to risk aversion and status quo bias. Practical implications and directions for future research are discussed.Peer reviewe

    The X-ray Properties of the Nearby Star-Forming Galaxy IC 342: The XMM-Newton View

    Full text link
    We present the X-ray properties of IC342 using XMM-Newton. Thirty-five sources are detected coincident with the disk of IC342 (more than tripling the number known), of which ~31 are likely to be intrinsic to IC342. This population shows a range of spectral properties and has an X-ray luminosity function slope and infrared luminosity comparable to that of starburst galaxies such as M82 and the Antennae, while its relative lack of extended X-ray emission is similar to the properties of quiescent spirals. We do detect long-term variability between this observation and the 1991 ROSAT and 1993/2000 ASCA observations for five sources. Notably, the second most luminous source IC342 X-2 is is found to be in its the lowest luminosity state observed for X-2 to date, although the slope of the spectrum is intermediate between the previously observed low/hard and high/soft states. IC342 X-1, on the other hand, is found to be in an identical state to that observed in 2000 with ASCA. Assuming X-1 is in an anomalous very high (VH) state, then either (1) X-1 has remained in this state between 2000 and 2002, and is therefore the longest duration VH-state binary ever observed, or (2) it was simply caught in a VH state by chance in both the 2000 ASCA and 2002 XMM-Newton observations. We have also confirmed the ROSAT HRI result that the nucleus of IC342 is made up of both point-like and extended emission. The relative fluxes of the two spectral components suggest that the nucleus is complex, with a soft extended component contributing approximately half of the total luminosity. (Abridged)Comment: AJ in press (December 2003), 9 pages, 7 figures, 2 tables, emulateapj.cls use

    CRAF phase 1, a framework to identify coastal hotspots to storm impacts

    Get PDF
    Low-frequency high-impact storms can cause flood and erosion over large coastal areas, which in turn can lead to a significant risk to coastal occupation, producing devastation and immobilising cities and even countries. It is therefore paramount to evaluate risk along the coast at a regional scale through the identification of storm impact hotspots. The Coastal Risk Assessment Framework Phase 1 (CRAF1) is a screening process based on a coastal-index approach that assesses the potential exposure of every kilometre along the coast to previously identified hazards. CRAF1 integrates both hazard (e.g. overwash, erosion) and exposure indicators to create a final Coastal Index (CI). The application of CRAF1 at two contrasting case studies (Ria Formosa, Portugal and the Belgian coast), validated against existing information, demonstrates the utility and reliability of this framework on the identification of hotspots. CRAF1 represents a powerful and useful instrument for coastal managers and/or end-users to identify and rank potential hotspot areas in order to define priorities and support disaster reduction plans

    Theoretical Limb Darkening for Classical Cepheids: II. Corrections for the Geometric Baade-Wesselink Method

    Full text link
    The geometric Baade-Wesselink method is one of the most promising techniques for obtaining a better calibration of the Cepheid period-luminosity relation by means of interferometric measurements of accurate diameters. In this paper we present new wavelength- and phase-dependent limb darkening corrections based on our time-dependent hydrodynamic models of the classical Cepheid zeta Gem. We show that a model simulation of a Cepheid atmosphere, taking into account the hydrodynamic effects associated with the pulsation, shows strong departures from the limb darkening otherwise predicted by a static model. For most of its pulsational cycle the hydrodynamic model predicts a larger limb darkening then the equivalent static model. The hydrodynamics affects the limb darkening mainly at UV and optical wavelengths. Most of these effects evolve slowly as the star pulsates, but there are phases, associated with shocks propagating into the photosphere, in which significant changes in the limb darkening take place on time-scales of the order of less than a day. We assess the implication of our model LD corrections fitting the geometric Baade-Wesselink distance of zeta Gem for the available near-IR PTI data. We discuss the effects of our model limb darkening on the best fit result, and analyze the requirements needed to test the time-dependence of the limb darkening with future interferometric measurements.Comment: 22 pages, 5 figures, to be published on the Astrophysical Journal, June 1 2003 issu

    Numerical Evaluation of Six-Photon Amplitudes

    Get PDF
    We apply the recently proposed amplitude reduction at the integrand level method, to the computation of the scattering process 2 photons -> 4 photons, including the case of a massive fermion loop. We also present several improvements of the method, including a general strategy to reconstruct the rational part of any one-loop amplitude and the treatment of vanishing Gram-determinants.Comment: 21 pages, 3 figures. Version accepted for publication in JHE
    • …
    corecore