22 research outputs found

    Characterization of novel microsatellite markers in Musa acuminata subsp. burmannicoides, var. Calcutta 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Banana is a nutritionally important crop across tropical and sub-tropical countries in sub-Saharan Africa, Central and South America and Asia. Although cultivars have evolved from diploid, triploid and tetraploid wild Asian species of <it>Musa acuminata </it>(A genome) and <it>Musa balbisiana </it>(B genome), many of today's commercial cultivars are sterile triploids or diploids, with fruit developing via parthenocarpy. As a result of restricted genetic variation, improvement has been limited, resulting in a crop frequently lacking resistance to pests and disease. Considering the importance of molecular tools to facilitate development of disease resistant genotypes, the objectives of this study were to develop polymorphic microsatellite markers from BAC clone sequences for <it>M. acuminata </it>subsp. <it>burmannicoides</it>, var. Calcutta 4. This wild diploid species is used as a donor cultivar in breeding programs as a source of resistance to diverse biotic stresses.</p> <p>Findings</p> <p>Microsatellite sequences were identified from five Calcutta 4 BAC consensi datasets. Specific primers were designed for 41 loci. Isolated di-nucleotide repeat motifs were the most abundant, followed by tri-nucleotides. From 33 tested loci, 20 displayed polymorphism when screened across 21 diploid <it>M. acuminata </it>accessions, contrasting in resistance to Sigatoka diseases. The number of alleles per SSR locus ranged from two to four, with a total of 56. Six repeat classes were identified, with di-nucleotides the most abundant. Expected heterozygosity values for polymorphic markers ranged from 0.31 to 0.75.</p> <p>Conclusions</p> <p>This is the first report identifying polymorphic microsatellite markers from <it>M. acuminata </it>subsp. <it>burmannicoides</it>, var. Calcutta 4 across accessions contrasting in resistance to Sigatoka diseases. These BAC-derived polymorphic microsatellite markers are a useful resource for banana, applicable for genetic map development, germplasm characterization, evolutionary studies and marker assisted selection for traits.</p

    A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    Get PDF
    OBJECTIVE: To generate a global reference for caesarean section (CS) rates at health facilities. DESIGN: Cross-sectional study. SETTING: Health facilities from 43 countries. POPULATION/SAMPLE: Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. METHODS: We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. MAIN OUTCOME MEASURES: Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. RESULTS: According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). CONCLUSIONS: This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. TWEETABLE ABSTRACT: The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems

    Molecular analysis of the most prevalent mutations of the FANCA and FANCC genes in Brazilian patients with Fanconi anaemia

    Get PDF
    Fanconi anaemia (FA) is a recessive autosomal disease determined by mutations in genes of at least eleven complementation groups, with distinct distributions in different populations. As far as we know, there are no reports regarding the molecular characterisation of the disease in unselected FA patients in Brazil. OBECTIVE: This study aimed to investigate the most prevalent mutations of FANCA and FANCC genes in Brazilian patients with FA. METHODS: Genomic DNA obtained from 22 racially and ethnically diverse unrelated FA patients (mean age ± SD: 14.0 ± 7.8 years; 10 male, 12 female; 14 white, 8 black) was analysed by polymerase chain reaction and restriction site assays for identification of FANCA (delta3788-3790) and FANCC (delta322G, IVS4+4A -> T, W22X, L496R, R548X, Q13X, R185X, and L554P) gene mutations. RESULTS: Mutations in FANCA and FANCC genes were identified in 6 (27.3%) and 14 (63.6%) out of 22 patients, respectively. The disease could not be attributed to the tested mutations in the two remaining patients enrolled in the study (9.1%). The registry of the two most prevalent gene abnormalities (delta3788-3790 and IVS4 + 4 -> T) revealed that they were present in 18.2% and 15.9% of the FA alleles, respectively. Additional FANCC gene mutations were found in the study, with the following prevalence: delta322G (11.4%), W22X (9.1%), Q13X (2.3%), L554P (2.3%), and R548X (2.3%) of total FA alleles. CONCLUSION: These results suggest that mutations of FANCA and FANCC genes are the most prevalent mutations among FA patients in Brazil
    corecore