1,257 research outputs found

    Approximation error model (AEM) approach with hybrid methods in the forward-inverse analysis of the transesterification reaction in 3D-microreactors

    Get PDF
    This work advances the approximation error model approach for the inverse analysis of the biodiesel synthesis using soybean oil and methanol in 3D-microreactors. Two hybrid numerical-analytical approaches of reduced computational cost are considered to offer an approximate forward problem solution for a three-dimensional nonlinear coupled diffusive-convective-reactive model. First, the Generalized Integral Transform Technique (GITT) is applied using approximate non-converged solutions of the 3D model, by adopting low truncation orders in the eigenfunction expansions. Second, the Coupled Integral Equations Approach (CIEA) provides a reduced mathematical model for the average concentrations, which leads to inherently approximate solutions. The AEM approach through the Bayesian framework is illustrated in the simultaneous estimation of kinetic and diffusion coefficients of the transesterification reaction. For this purpose, the fully converged GITT results with higher truncation orders for the 3D partial differential model are employed as reference results to define the approximations errors. The results highlight that either the non-converged solutions via GITT or the reduced model solution obtained via CIEA, when taking into account the model error, are robust and cost-effective alternatives for the inverse analysis of nonlinear convection–diffusion-reaction problems

    Innovative Metallic Microfluidic Device for Intensified Biodiesel Production

    Get PDF
    We present a strategy for intensified biodiesel production in a novel metallic microdevice. Additive manufacturing using Selective Laser Melting (SLM) was employed to build the metallic device consisting of multiple micro reactors monolithically integrated with multiple micro heat exchangers. This device allows high conversion rate of biodiesel production with concomitant use of the rejected heat from external source to enhance the reaction temperature and, thereby, its output. The biodiesel production was carried out using soybean oil, ethanol and NaOH as the catalyst. The influences of the reaction temperature and the residence time in the biodiesel production was examined. Biodiesel yield increased with the reaction temperature and a rate of conversion of 99.6% was achieved with a reactor residence time of less than 35 seconds. The work opens up a pathway to exploit waste heat to intensify biodiesel production and contribute significantly to global sustainability
    • …
    corecore