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Approximation error model (AEM) approach with hybrid methods in the forward-

inverse analysis of the transesterification reaction in 3D-microreactors 

 

This work advances the approximation error model approach for the inverse 

analysis of the biodiesel synthesis using soybean oil and methanol in 3D-

microreactors. Two hybrid numerical-analytical approaches of reduced 

computational cost are considered to offer an approximate forward problem 

solution for a three-dimensional nonlinear coupled diffusive-convective-reactive 

model. First, the Generalized Integral Transform Technique (GITT) is applied 

using approximate non-converged solutions of the 3D model, by adopting low 

truncation orders in the eigenfunction expansions. Second, the Coupled Integral 

Equations Approach (CIEA) provides a reduced mathematical model for the 

average concentrations, which leads to inherently approximate solutions. The 

AEM approach through the Bayesian framework is illustrated in the simultaneous 

estimation of kinetic and diffusion coefficients of the transesterification reaction. 

For this purpose, the fully converged GITT results with higher truncation orders 

for the 3D partial differential model are employed as reference results to define 

the approximations errors. The results highlight that either the non-converged 

solutions via GITT or the reduced model solution obtained via CIEA, when taking 

into account the model error, are robust and cost-effective alternatives for the 

inverse analysis of nonlinear convection-diffusion-reaction problems. 

Keywords: Approximation error model; integral transforms; improved lumped 

approach; GITT; CIEA; MCMC; hybrid methods; microreactors; biodiesel 

synthesis.  



Nomenclature 

 

*C  dimensional concentration, mol m-3 

C dimensionless concentration  

*D  diffusion coefficient, m2 s-1  

D diffusion parameter in the exponential format 

e  vectors containing the measure error derived randomly from a known distribution 

function  

e  vectors containing the mean values of the measurement error distribution 

G  kinetic terms 

H  total height of the microreactor, m 

TGH  interface position inside the microreactor, m 

J  sensitivity matrix 

j  reduced sensitivity coefficient 

k  kinetic constants, m3 mol-1 s-1 

L total length of the microreactor, m 

N  number of measurements 

n  number of parameters to be estimated 

NT  truncation order of the transformed system 

nt  number of accepted states in the MCMC method 

p  vector of parameters 

p  vectors containing the mean values of p  

*
p  candidate vector of parameter in the MCMC method 

q  probability distribution function 

Q  volumetric flow rate, m3 s-1 

U  dimensionless velocity profile or uniform distribution  

u  dimensional velocity profile, m s-1 

Vol volume, m3 

W  total width of the microreactor, m 

W  covariance matrix for experimental measurements error 

ApW  covariance matrix for approximation error 



pW  covariance matrix for parameters 

W  covariance matrix combining the experimental and approximation errors 

x, y, z  dimensional spatial coordinate, m 

X, Y, Z  dimensionless spatial coordinate 

y  vector of measurements 

 

Greek symbols 

 

α  search step in the MCMC methodμ  dynamic viscosity, Pa. s 

ξ , ς , ω  dimensionless group 

ρ  density, kg/m3 

ε  vector containing the model approximation error 

ε  increment for calculus of derivative 

  kinetic parameter in the exponential format 

  distribution of measurements and approximate errors 

  vector with the mean values of   

  covariance matrix of p  

ηp  covariance matrix of   and p  

  standard deviation  

̂  reference standard deviation  

τ  residence time, min 

π  probability distribution function 

 

Subscripts and superscripts 

 

A  referring to the alcohol 

Ac  referring to the accurate solution 

Av referring to the average potential 

Ap referring to the approximate solution 

B  referring to the biodiesel 

DG  referring to the diglyceride 



Exp  referring to the experimental measurements 

GL  referring to the glycerol 

i  counter 

MG  referring to the monoglyceride 

p  referring to intermediates and products of reaction 

s  referring to the species 

Sim  referring to the simulated measurements 

TG  referring to the triglyceride 

  



1 - Introduction 

 

Inverse analysis has great relevance in engineering and physical sciences, with its 

mathematical and statistical background being readily available in various sources (Beck and 

Arnold, 1977; Alifanov, 1994; Migon and Gamerman, 1999; Özisik and Orlande, 2000; Kaipio 

and Somersalo, 2004; Gamerman and Lopes, 2006; Schwaab and Pinto, 2007). The MCMC 

method is a widely used Bayesian method that allows the statistical inference about unknown 

parameters from its posterior probability density, considering the measurements and the 

related uncertainties through the likelihood function and any prior information from the 

unknown parameters (Migon and Gamerman, 1999; Gamerman and Lopes, 2006; Özisik and 

Orlande, 2000; Orlande, 2015). This method is especially suitable when it is unfeasible to 

find an analytical solvable posterior distribution and/or a large parameter space is involved, 

allowing for the Bayesian inference application even in rich and complex models. To speed 

up the MCMC calculations, approximate solutions can replace a more accurate forward 

problem treatment meeting constraints in the computing time, but at the same time ensuring 

accuracy in the inverse analysis, by using the so-called Approximation Error Model (AEM) 

approach. The error when approximate forward solutions are used can be accounted through 

statistical quantities obtained from a sampling procedure of the difference between 

approximate and accurate solutions. Such information can then be inserted in the likelihood 

function as an approximation error (Kaipio and Somersalo, 2004; Nissinen et. al., 2008, 2009, 

2011a, 2011b; Lamien and Orlande, 2013; Orlande et. al., 2014, Pacheco et. al. 2015, 

Lamien et. al. 2017, 2019). 

In this work, a robust and efficient statistical inversion approach is implemented to 

estimate the kinetic and diffusion coefficients of the biodiesel synthesis in 3D-microreactors 

within the Bayesian framework through the Metropolis-Hastings algorithm in the Markov 

Chain Monte Carlo (MCMC) method. Forward analysis for diffusive-convective-reactive 

processes governed by nonlinear coupled multidimensional mathematical models is not a 

straightforward computational task and hybrid techniques are particularly attractive since they 

combine numerical and analytical approaches to construct more accurate and cost-effective 

solutions, as compared to purely numerical approaches. The so-called Generalized Integral 

Transform Technique (GITT) is an example of a hybrid method that has been successfully 

applied in the solution of various flow, heat and mass transfer problems (Aparecido et al., 

1989; Cotta, 1990, 1993, 1994, 1998; Cotta and Mikhailov, 1997, 2006; Cotta et. al., 2013; 

2015; 2016a; 2016b; 2018a; 2018b, Pontes et. al., 2018, Serfaty and Cotta, 1990). Derived 



from the Classical Integral Transform Technique (CITT) (Mikhailov and Özisik, 1984; Özisik, 

1993), the GITT is based on analytical eigenfunction expansions and numerical transformed 

potentials, obtained, respectively, from the solution of a suitable eigenvalue problem and of 

an infinite nonlinear coupled ordinary differential system. This transformed system usually 

depends on a single independent variable, and, therefore, its numerical solution demands 

much less computational effort than the original multi-dimensional model, making the GITT a 

successful technique for performing the time-consuming computational task inherent to 

inverse analysis (Naveira-Cotta et. al., 2010a, 2010b, 2011a, 2011b; Knupp et. al., 2012a, 

2012b, 2013; Cotta et. al., 2016a; Abreu et. al., 2014, 2018). 

Another interesting alternative of reducing the computational effort in forward-inverse 

analysis is the so-called Coupled Integral Equations Approach - CIEA (Aparecido and Cotta, 

1989; Cotta and Mikhailov, 1997; Regis et al., 2000; Naveira et. al., 2009; Sphaier et. al., 

2017; Kakaç et. al., 2018; Costa Junior and Naveira-Cotta, 2019). The CIEA is a problem 

reformulation tool that has been employed in the simplification of diffusion and convection-

diffusion problems via averaging processes in one or more of the involved space coordinates. 

The resulting lumped-differential formulations offer substantial improvement over classical 

lumping schemes in terms of accuracy, without introducing additional mathematical 

complexity in the corresponding final simplified differential equations to be handled. The CIEA 

has also been successfully applied to a few forward-inverse analyses in different contexts 

(Lamien and Orlande, 2013; Orlande et. al., 2014; Costa Junior. et. al., 2018; Costa Junior 

and Naveira-Cotta, 2019), where it should be pointed out the contribution in combining the 

improved lumped-differential formulation with the Approximation Error Model (Orlande et. al., 

2014, Pacheco et. al., 2015). 

The idea of combining the AEM with hybrid methods is here further explored. The 

physical problem used to demonstrate the proposed combined approach is the biodiesel 

synthesis in microreactors via the transesterification reaction, which is a process that has 

been widely explored in the literature due to the high conversion rate of triglyceride obtained 

with low residence time and temperature levels compared to traditional processes performed 

in conventional batch reactors (Al-Dhubabian, 2005; Guan et. al., 2009, 2010; Xie et. al., 

2012; Billo et. al., 2015; Pontes et.al. 2017, Costa Junior and Naveira-Cotta, 2019, Costa 

Junior et. al. 2019). Biodiesel is generally defined as the mono alkyl esters of long chain fatty 

acids derived mainly from the transesterification reaction between triglycerides, obtained 

from renewable raw materials such as vegetable oils or animal fats, and alcohol, usually 

methanol or ethanol, in the presence of a catalyst (Noureddini and Zhu, 1997; Xie et. al., 



2012). It is considered a non-toxic and biodegradable product with physical-chemical 

properties very similar to those of conventional diesel and that presents low emissions of 

carbon, sulfur, particulate matter and unburned hydrocarbons (Meher et. al., 2006; Dennis 

et. al., 2008; Xie et. al., 2012). Microreactors favor the reaction of the immiscible reagents in 

the transesterification, since the molecular diffusive effects occur more rapidly due to the 

significant reduction in the diffusion path length (Malengier et. al., 2012), resulting in more 

effective mass and heat transfer processes. However, due to the complexity of this 

application, many effects influence the biodiesel yields, such as the complex liquid-liquid 

interaction established in the reactive system, the reaction kinetic mechanism, the solubility 

of the components (De Boer and Bahri, 2009), the types of reagents and their molar feed 

ratio, the temperature of the system and the types and concentration of the catalysts, posing 

some difficulties to develop an optimized design of the microreactors for the biodiesel 

production. Thus, computational simulation plays a crucial role in determining the chemical 

kinetic and diffusion coefficients and, for that purpose, mathematical models and 

methodologies for forward-inverse analysis have been addressed in the literature (Al-

Dhubabian, 2005; Dennis et. al., 2008; Richard et. al., 2013; Pontes et. al., 2016, 2017; Costa 

Junior and Naveira-Cotta, 2019, Costa Junior. et. al., 2020a, Costa Junior. et. al., 2020b). 

The goal of this work is to simultaneously estimate the kinetic and diffusion 

coefficients of the transesterification with soybean oil and methanol in microreactors, by using 

simulated experimental data and approximate solutions obtained from a diffusive-convective-

reactive nonlinear multicomponent 3D model (Pontes et. al., 2017; Costa Junior and Naveira-

Cotta, 2019). The fully converged solutions derived through the GITT approach from the 3D 

mathematical model are considered as the accurate reference results (Pontes et. al., 2017). 

Two alternative low-cost approximate solutions are then explored, one from a reduced model 

derived by the CIEA and the other directly obtained from the GITT approach, but considering 

non-converged solution with low truncation orders in the eigenfunction expansions. The error 

analysis is performed only once, within a prior range considered for the parameters, and then 

approximate solutions combined with the approximation error approach are used in the 

inverse analysis leading to a significant reduction in the overall computational time. A 

sensitivity analysis together with the sequential experimental design are also presented to 

identify possible linear dependence among the parameters and to identify which residence 

times should be chosen to take the experimental measurements. In light of experimental 

limitations, only data on the average concentrations of four species at the microreactor outlet 

are considered to be available, for a few values of residence time, from the simulated data. 



2 - Forward-Problem: formulation and solution methodology 

The forward-problem here addressed has been posed in (Pontes et. al., 2017) and it 

consists in determining the concentration profile of the species involved in the 

transesterification in microreactors from the knowledge of inlet and boundary conditions, 

reaction mechanism, geometry and parameters of the physico-chemical process.  

The mathematical model for the biodiesel production in microreactors considers the 

hypothesis of continuous fully developed stratified laminar and incompressible flow of oil and 

alcohol, both as Newtonian fluids, where the significant reactive effects occur only in the oil 

phase (Al-Dhubabian, 2005; Pontes et. al., 2017). Figure 1 illustrates a scheme of the velocity 

profile for the stratified flow of oil and alcohol in a microsystem obtained from the analytical 

solution based on the Classical Integral Transform Technique (CITT) (Pontes et. al., 2017). 

 

[Figure 1 near here] 

 

Since this mathematical model assumes that the reaction is carried out mainly in the 

oil phase, the residence time τ  can be written as a ratio between the volume and the 

volumetric flow rate of the oil species, in the form: 

 

 TG TG

TG TG

Vol LWH
τ

Q Q
= =  (1) 

 

where Vol
TG

 is the volume of oil layer, TGQ  is the oil volumetric flow rate, L  and W  are the 

length and width of the microreactor, and TGH  is the position of the interface between the oil 

and the alcohol. Different volumetric flow rates lead to different residence times. By assuming 

the transesterification as a second order and reversible reaction (Noureddini and Zhu, 1997; 

Al-Dhubabian, 2005; Pontes et. al., 2017), the dimensionless mathematical model for the 

concentration of the species in the transesterification mass transfer problem is then given by 

(Pontes et. al., 2017): 

 

    ( )
( ) 2 2

s s s
TG s s2 2

C X,Y,Z C C
U Y,Z ξ ω ςG , where s = TG,DG,MG,B,A,GL

X Y Z

   
= + +     
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 (2a) 

 ( ) ( )TG sC 0,Y,Z 1, C 0,Y,Z 0, where s = DG,MG,B,A,GL= =    (2b,c) 
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C
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
= =  =


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with dimensionless groups defined as: 

 

 

* *

s Ao
s Ao* *

TGo TGo TG

* * 2

TG TGo s TG
TG s 2 2

TG,Av TG,Av TG,Av TG

C C x y z
C = , C = ,X = , Y = , Z = ,

C C L H W

u LC LD H
U = , ς = , ξ = , ω =

u u u H W

        

      

  (2i-q) 

 

where *

TGoC  and *

AoC  are the dimensional inlet concentration of triglycerides and the 

equilibrium concentration of alcohol at the interface, respectively, 
TG,Avu  is the average 

velocity for the oil stream (TG), U is the dimensionless velocity profile and 
*D  is the diffusion 

coefficient of each species. sG  are the chemical kinetic terms for each species, where 1k  to 

6k  are the kinetic constants, according to the following equations: 

 

 TG 1 TG A 2 DG BG k C C + k C C= −   (2r) 

 A 1 TG A 2 DG B 3 DG A 4 MG B 5 MG A 6 GL BG k C C +k C C k C C +k C C k C C +k C C= − − −  (2s) 

 DG 1 TG A 2 DG B 3 DG A 4 MG BG k C C k C C k C C + k C C= − −   (2t) 

 MG 3 DG A 4 MG B 5 MG A 6 GL BG k C C k C C k C C + k C C= − −   (2u) 

 GL 5 MG A 6 GL BG k C C k C C= −  (2v) 

 B 1 TG A 2 DG B 3 DG A 4 MG B 5 MG A 6 GL BG k C C k C C + k C C k C C + k C C k C C= −  −  −  (2w) 

 

The mathematical model defined by equations (2) is here solved through the GITT 

approach, as detailed in (Pontes et. al., 2017). Also, the alternative reduced model is obtained 

by the CIEA approach, as presented in further detail in (Costa Junior and Naveira-Cotta, 2019). 

Both methodologies are described for the present application in the Electronic Supplementary 

Material which is associated with this article. The GITT methodology is employed in providing 

both the accurate reference results, through the fully converged solution for sufficiently large 



truncation orders, and the alternative low-cost approximate solution, considering fairly low 

truncation orders in the eigenfunction expansions. In the CIEA approach, the system of lumped-

differential equations for the average concentrations results in being not dependent on the 

diffusion coefficients 
*

TGD  and *

PD , due to the zero flux boundary conditions at the reactor walls 

for these species, but retains the influence on the diffusion coefficient for the alcohol, as 

discussed in (Costa Junior and Naveira-Cotta, 2019). On the other hand, the non-converged 

solutions developed by GITT conserve the information about all diffusion coefficients, even for 

very low truncation orders in the eigenfunction expansion. 

After the solution of the forward problem the average concentrations, ( )s,AvC X , can be 

evaluated from: 

 

 ( )
( ) ( )

( )

1 1

TG s

0 0
s,Av 1 1

0 0

U Y,Z C X,Y,Z dYdZ

C X

U Y,Z dYdZ

=
 

 

 (3) 

 

 

3 – Inverse problem: Bayesian inference with MCMC and approximation error 

 

The inverse problem here addressed to determine the kinetic and diffusion 

coefficients of the transesterification reaction shall consider the two approximate solutions 

previously mentioned: lumped reformulation based on the CIEA approach (one-dimensional 

reduced model) and GITT solution with a low truncation order (three-dimensional model with 

non-converged solution). The relative merits of the alternative cost-effective solutions shall 

then be critically examined. 

In the estimation procedure, only the concentrations of the triglyceride, diglyceride, 

monoglyceride and biodiesel species are considered as available data, since, usually, after 

the reaction, the alcohol and glycerol species are separated from the product (Costa Junior 

and Naveira-Cotta, 2019). In addition, this information is considered to be available only at 

the microreactor outlet (X=1), in light of the experimental difficulties in measuring 

concentrations along the reactor length. 

 

3.1 - Sensitivity analysis and sequential experimental design 



 

Before addressing the estimation of the unknown parameters, a sensitivity analysis 

and a sequential experimental design are proposed, in order to give some insights regarding 

the influence of each additional experimental data in the inverse problem solution. 

Specially in the application here considered, the characterization of the biodiesel 

sample is commonly performed by gas chromatography analysis, which is a sophisticated, 

time consuming, and expensive technique, which makes the analysis of a larger number of 

samples undesirable. Therefore, the sequential experimental design improves the estimation 

and helps to reduce time and costs in the experimental campaign, since its output information 

gives the best sequence of experiments to be performed. 

Here, each experiment leads to four responses which are the concentrations of the 

TG, DG, MG and B species. Each species is considered as a sensor for the concentration 

measurements, which allows to define (Özisik and Orlande, 2000): 
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p
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p
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p

p
 (4a) 

 

where  i i,TG i,DG i,MG i,BC C ,C ,C ,C= , i 1,2,..., N= . Here, 𝑛 represents the dimension of the 

parameters vector and N  is the number of measurements per species for different residence 

times. Then, the sensitivity matrix ( )J p  can be written as: 
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where the derivative 
T

1

1

C

p




 is calculated as:  
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The other derivatives in the complete sensitivity matrix are calculated following the 

proposed idea presented in equation (4.c), where  * * *

1 2 3 4 5 6 TG A Pk , k , k , k , k , k ,D ,D ,Dp =  is the 

vector of parameters to be estimated and *

PD  is considered to be the same for all 

intermediates and products of reaction (DG, MG, GL, B), following Al-Dhubabian (2005). The 

analysis of the sensitivity coefficients helps to identify those parameters with lower 

magnitudes or linear dependence with respect to the others, in order to reduce the ill-

condition nature of the inverse problem and lead to more accurate and precise estimates 

(Özisik and Orlande, 2000). 

To perform the linear dependence analysis, the reduced sensitivity coefficients are 

commonly applied: 

 

 
s

s,i i

i

C
j p

p


=


, where s TG,DG,MG,B =  (4d) 

 

The reduced sensitivity coefficients attenuate problems related to different orders of 

magnitude observed in the sensitivity coefficients and, consequently, helping to perform a 

more appropriate linear dependence analysis among them. The derivative of s

i

C

p




 is here 

computed by using the finite difference method in forward formulation with an increment iεp  

that is proportional to the parameter value (Özisik and Orlande, 2000): 

 



 
( ) ( )s 1 2 i i n s 1 2 i ns

i i

C p ,p ,...,p εp ,...,p C p ,p ,...,p ,...,pC

p εp

+ −
=


  (5) 

 

Besides the analysis of the reduced sensitivity coefficients, the matrix ( )J p  is 

employed to develop a sequential experimental design to identify those experiments that 

maximize the determinant of the matrix 
T

J J  reducing the uncertainty in the parameter 

estimation (Pinto et. al. 1990, 1991; Schwaab and Pinto, 2007). 

In this work, possible experiments were proposed for different reaction residence 

times, while keeping unchanged the reaction temperature, triglyceride to alcohol molar ratio, 

catalyst concentration, type of reagents, and the microreactor geometry. The determinant of 

the matrix 
T

J J  is maximized sequentially during the addition of information on each residence 

time in the matrix J , aiming to reach the best combination among them. 

The GITT solution for the complete 3D model with a sufficiently high truncation order, 

in light of the error control capabilities through a proper convergence analysis, is taken as the 

reference benchmark result and the synthetic experimental data arises from applying noise 

to this “true value”. Synthetic measurements for the average concentrations of triglyceride, 

diglyceride, monoglyceride and biodiesel species are considered to be taken at the reactor 

outlet, for a few selected values of the residence time. 

 

3.2 - Bayesian inference with approximation error 

 

In a Bayesian inference approach, a limited set of available information is used to 

reduce the uncertainties present in an inferential or decision-making problem (Orlande, 2007; 

Orlande, 2015). New information can be considered and added to the previous set according to 

Bayes' theorem, building the necessary basis to apply the statistical inversion approach by 

adopting the following hypotheses: 

 

1 - All variables included in the model are modeled as random variables; 

2 - The randomness describes the degree of information concerning their realization; 

3 - The degree of information concerning these values is coded in probability 

distributions; 

4 - The solution of the inverse problem is the posterior probability distribution; 

 



The Bayes’ theorem can be written as: 

 

 ( ) ( )
( ) ( )

( )

Exp

Exp

Exp

π π
π π

π

prior

posterior = =
y p p

p p y
y

 (6a) 

 

where ( )Expπ y p  is the likelihood function which provides the uncertainties and conditional 

probability of a given vector of parameters p  lead to the vector of observed measurement Exp
y

, ( )πprior p  is the prior distribution containing the information and uncertainties about the 

parameters before observing the measurements Exp
y , which in this work will be considered as 

truncated Gaussian distribution for diffusion coefficients and Uniform for kinetic coefficients, 

( )Expπ y  is the marginal probability density of the measurements that plays the role of a 

normalizing constant, and ( )Expπ p y  is the posterior distribution density which provides the 

uncertainties and conditional probability to obtain p  given the observations 
Exp

y . 

Assuming that the measurements errors are additive, independent of p  and follow a 

Gaussian distribution with zero mean and with a known covariance matrix W , the likelihood 

function can be defined as: 

  

 ( ) ( ) ( )( ) ( )( )
TN/2 1/2Exp Exp Sim 1 Exp Sim1

π 2π exp
2

− − − 
= − − − 

 
y p W y y p W y y p  (6b) 

 

where, 
Exp

y  is the vector containing the synthetic experimental data generated from the 

mathematical model, and 
Sim

y  is the calculated potential based on the adopted mathematical 

model. Matrix W  is written as: 

 

 

2

1

2

2

2

N

0 0

0 0

0 0







 
 
 =
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 
  

W  (6c) 

 

where   represents the standard deviation of the observed measurements.  



Eventually, information on the parameters are accessible and might be represented 

as a Gaussian prior distribution, and can be incorporated in the inverse analysis in the form:  

 ( ) ( ) ( ) ( )
1/2n/2 T 1

p p

1
π = 2π exp

2
prior

−− − 
− − − 

 
p W p p W p p  (6d) 

where p  and 
pW  are the known mean and covariance matrix for p , respectively.  

Assuming the solution via GITT for the complete 3D model with a higher truncation 

order is the existing “truth”, ( )Sim

Acy p , so the vector of synthetic experimental data Exp
y  arises 

from applying a noise based on a known probability distribution function for the measurement 

errors into the vector containing the accurate values, ( )Sim

Acy p , according to equation (6e): 

 

 ( )Exp Sim

Ac
  + y = y p e  (6e) 

 

where e  is a vector containing the experimental noise. 

Once the proposed approximate solution, ( )Sim

Apy p , does not coincide with that “true” 

one, ( )Sim

Acy p , then 
Exp

y  will, at the end, float around the vector of approximate solutions, 

( )Sim

Apy p , according to (Kaipio and Somersalo, 2004; Nissinen et. al., 2008, 2009, 2011a, 

2011b; Lamien and Orlande, 2013; Orlande et. al., 2014, Pacheco et. al. 2015, Lamien et. al. 

2017, 2019): 

 

 ( ) ( )Exp Sim

Ap
 + + y = y p ε p e  (6f) 

 

where  is a vector containing the information about the discrepancy between 

approximate and accurate models. Equation (6f) can be written in a simpler form as: 

  

 ( ) ( )Exp Sim

Ap +y = y p p  (6g) 

 ( ) ( )= +p e ε p  (6h) 

 

The calculation of  including the error in the measurements, e , and the 

approximation error, , can be done in a reasonable simple way by assuming  like a 



Gaussian distribution. This assumption ensures effective results making possible to rewrite 

equation (6b) taking into account the error of the approximate model in the likelihood function, 

as shown below (Kaipio and Somersalo, 2004; Nissinen et. al., 2008, 2009, 2011a, 2011b; 

Lamien and Orlande, 2013; Orlande et. al., 2014, Pacheco et. al. 2015, Lamien et. al. 2017, 

2019): 

  

 ( ) ( ) ( )( ) ( )( )
1/2 TN/2Exp Exp Sim 1 Exp Sim

Ap Ap Ap

1
π 2π exp

2

−− − 
= − − − − − 

 
y p W y y p W y y p   (6i) 

 

where   and W  are defined as (Kaipio and Somersalo, 2004; Orlande et. al., 2014): 

 

 ( )1−= + −ηpe ε + p μ    (6j) 

 1

Ap

−= + − ηp pηW W W     (6k) 

 

where e  is the mean of e , ε  is the mean of , μ  is the mean of p ,   is the covariance 

matrix of p ,
ApW  is the covariance matrix of  and 

ηp  is the covariance matrix of   and 

p . 

Equations (6j,k) are simplified regarding the hypothesis of Gaussian measurement 

errors with zero mean used for likelihood, which leads to e = 0 , and neglecting the 

dependence between   and p , which implies in 
ηp = 0 , resulting in the following 

expressions: 

 

  ε  (6l) 

 
Ap= +W W W  (6m) 

 

Statistical properties of  are calculated only once, before the estimation procedure, 

through a Monte Carlo simulation of the difference between the accurate and approximate 

solutions, ( ) ( )Sim Sim

Ac Ap−y p y p , within the prior intervals assumed for the parameters. The sampling 

obtained is used to calculate mean and standard deviation which will be used in the 

approximation error model approach. This task in general requires a much lower computational 



effort if compared to the complete parameter estimation procedure via MCMC using the more 

accurate solution in the estimation step. 

 

 

3.3 - MCMC through Metropolis-Hastings algorithm 

 

Markov Chain Monte Carlo (MCMC) method is based on a collection of a large sample 

of a given probability function via a stochastic process such that the value 
i

p , given all previous 

values ( ) ( ) ( ) ( )0 1 2 i 1
, , ,...,

−
p p p p , depends only on ( )i 1−

p , not mattering the past to predict a future 

state, where from that it is possible to extract some desired information (Gamerman and Lopes, 

2006). 

Here the adopted MCMC method was based on a "random walk" in the space of 

( )Expπ p y  that converges to a stationary distribution, and which allows to summarize its 

information in central and dispersion values that give an idea of its variability (Migon and 

Gamerman, 1999). For this, the initial states also called burning sampling, which comprise the 

evolution of the chain up to its steady behavior, must be eliminated. 

To promote the random walk in the MCMC method, the Metropolis-Hastings algorithm 

is used to establish a mechanism for accepting a candidate state 
*

p  obtained from an auxiliary 

probability distribution ( )iq ,*
p p  given the current state 

i
p . The MCMC method with Metropolis-

Hastings algorithm for the parameter estimation can be schematized as illustrated in figure 2: 

 

[Figure 2 near here] 

 

The randomness for the search step to get the candidate points in the MCMC method 

can be inserted by using a uniform distribution according to: 

 

 ( ) * i

j jp p 1 α 2w 1 , 1 j < n= + −   , n = number of parameters  (7) 

 

where α  is the search step and w is an random number uniformly sampled in the range [0,1]. 

The acceptance rate of the MCMC must be observed in order to avoid that the chain 

stays around the same state for an excessive number of iterations or that many new states are 



not accepted. The movements of the chain must be dosed to make it move throughout the 

domain of ( )Exp

Apπ p y  with large displacements that have real chances of acceptance.  

 

4 - Results and discussion 

 

The computed code was implemented in the Mathematica 10.0 platform (Wolfram, 

2016), using the NDSolve routine to numerically solve the system of ODEs for the transformed 

potentials that results from the GITT approach, and in the solution of the reduced model for the 

average potentials, through the CIEA approach. Table 1 presents the parameters adopted for 

the simulation, obtained in the literature (Al-Dhubabian, 2005; Costa Junior and Naveira-Cotta, 

2019). 

 

[Table 1 near here] 

 

The concentrations of the species were evaluated for different residence times, which 

for a fixed geometry are obtained by varying of volumetric flow rates of the reagents, according 

to equation (1).  

Since, experimentally, the measurements of the species concentrations are performed 

only on reaction products collected at the outlet of the microreactor, even though the GITT 

solution provides the analytical local information within the reactor, the results further presented 

are mainly based on the comparison of the average concentration of the species, that were 

constructed through Eq. 3. 

Figure 3 illustrates the accurate and approximate dimensionless average 

concentrations of the species along the residence time, obtained through CIEA and GITT with 

different truncation orders: NT = 2, 5 and 40. The concentration of triglyceride decreases 

throughout the residence time, Fig. 3a, while the biodiesel and glycerol species increase, Figs. 

3e,f, respectively. The intermediate species diglyceride and monoglyceride are initially formed, 

reach a maximum and decrease as the reaction progresses to equilibrium (Figs. 3c,d, 

respectively). The GITTNT=40 solution is here assumed to be the most accurate one while the 

other are considered approximate solutions. It is possible to notice that, the GITTNT=5 and 

GITTNT=40 solutions present, at the graphic scale, a fairly good adherence between themselves, 

for all the species. However, the solutions GITTNT=2  and 1D-CIEA slightly differ from that one 

derived via GITTNT=40.  



 

[Figure 3 near here] 

 

Table 2 presents the CPU time required for the solutions through GITTNT=40, GITTNT=5 , 

GITTNT=2 and 1D-CIEA, during a single solution of the forward problem. This comparative 

evaluation of computational time was performed on a desktop microcomputer with Intel Core i7-

7500U CPU @ 2.70GHz-2.90GHz. The accurate solution GITTNT=40 required a computational 

time of only 102s, which though not optimized, can be considered fast enough for a 

multidimensional nonlinear forward problem of six coupled species, but would not be fast 

enough to be applied in the present stochastic approach for inverse problem analysis. The two 

proposed approximate solutions, 1D-CIEA and GITTNT=2 required a computational time nearly 

6500 and 15000 times smaller than the accurate solution, GITTNT=40, respectively, and 

therefore, they are preferable to perform the parameter estimation in the present work. 

 

[Table 2 near here] 

 

To evaluate the reduced sensitivity coefficients of the kinetic and diffusion coefficients, 

the exponential format k 10=  and D 10* D=  is used, where   and D  are the new parameters 

to be estimated, instead to the original value “k” and “ D*
” (Costa Junior. and Naveira-Cotta, 

2019). The exponential format for the parameters has been proposed since it allows to reduce 

the search interval for the parameters in the MCMC method and promotes a desirable increment 

in the sensitivity of the concentrations, facilitating an extensive investigation within the search 

interval with small values for the search step (Costa Junior. and Naveira-Cotta, 2019). 

The sensitivity analysis and the sequential experimental design, which demand more accurate 

information about the physical phenomenon, were performed with the accurate solution 

GITTNT=40. Figure 4 illustrates the reduced sensitivity coefficients evaluated for the different 

species TG, DG, MG and B, and indicates a linear dependence among some of them, notably 

between 4  and 5  and between 2  and 6 . Comparing Figures 3 and 4, it is observed that 

the reduced sensitivity coefficients related to the parameters 1 , 2 , 3 , 4 , 5 , 6  and AD  

present large amplitudes, of the same magnitude as the species concentrations, which 

somehow favors the inverse analysis. However, the reduced sensitivity coefficients related to 

the parameters TGD  and PD  have lower amplitudes in comparison to the concentrations of the 



species and the other parameters, and thus an increased difficulty in their estimation is 

expected. 

 It is also observed that, for low residence times, some sensitivity coefficients have a 

value very close to zero, which suggest inadequate times for the collection of experimental data, 

despite being a desirable result in the biodiesel production process. 

 

[Figure 4 near here] 

 

For the sequential experimental design, 40 different residence times in the range 

from 0.5 to 20 minutes, equally spaced by 0.5 minutes, are considered as candidates to be 

experimented, and the determinant of the matrix 
T

J J  is maximized through the sequential 

experimental design method. 

Also, in the sequential experimental design, the quality of information carried by each 

species into the inverse problem procedure was evaluated to justify which species must be 

used in the likelihood. Each species, triglyceride, diglyceride, monoglyceride and biodiesel, 

was evaluated singly and combined among them. The analysis of the matrix 
T

J J , Fig. 5a,  

indicates an order of importance for the species to be considered in the measurement 

process (i.e.: B, DG, MG and TG), aiming at a better combination of results to be used in the 

estimation process. As can be seen, the information added through the triglyceride species 

does not imply in a significant change in the determinant of 
T

J J , so the concentration of this 

species could be in principle disregarded in the inverse procedure without losing information 

in the estimations. However, since information on this species is generally available 

experimentally, the triglyceride concentration was also considered in subsequent inverse 

analyzes. 

Figure 5b illustrates the gain in the determinant of 
T

J J  considering, or not, the 

sequential experimental design for the case where four species would be experimentally 

available. The red triangle curve represents the determinant of 
T

J J  taking into account the 

list of 40 candidates, of residence times, in an ascending order from 0.5 to 20 minutes, equally 

spaced of 0.5 minutes. And the black circle curve shows the increment observed in the 

determinant of 
T

J J  when the same number of cases (40 at total) was considered in a sorted 

sequence, derived from the sequential design procedure. It can be noticed that the sequential 

design improves values for the determinant of 
T

J J  up to the twentieth candidate, from that 



point and beyond there is no significant difference in the order of sub sequential candidates. 

For this reason, the inverse analysis from this point on was performed considering measures 

for the first 20 candidates indicated by the sequential experimental design: 5.5min, 2.5min, 

18.5min, 0.5min, 1.5min, 11min, 4.5min, 2min, 20min, 1min, 6.5min, 11.5min, 4min, 19.5min, 

3min, 5min, 10.5min, 19min, 3.5min, and 6min. 

 

[Figure 5 near here] 

 

The synthetic experimental data were simulated from the accurate solution (GITT 

with NT= 40) evaluated in the 20 residence times mentioned before. At each residence time, 

the dimensionless average concentrations for the 4 species (TG, DG, MG and B) at the 

reactor outlet are obtained, totaling 80 synthetic experimental data. The exact solution was 

disturbed by a Gaussian noise with zero mean and a standard deviation 
Simˆ C =  in 

accordance with the following expression:  

 

( )Exp SimC C 0,1N= +       (8) 

 

Although lower values for ̂  were investigated, such as ̂  = 0.01 and ̂  = 0.03, only 

the results for ̂  = 0.05 will be here presented since such estimations have more discrepant 

values with respect to the original exact parameters. 

Information about the approximation error in modeling is evaluated through a Monte 

Carlo simulation involving the difference between the accurate and approximate solutions,

( ) ( )Ac Ap−C p C p , for different vectors p  randomly generated from uniform distributions. 

Table 3 presents the reference values and limits of the parameters considered in the 

sampling procedure used in the construction of information about the model error. Mean and 

standard deviation, for this approximation error, were calculated from this sampling and used 

in the approximate posterior formulation, Eq. (6i), for those residence times chosen for the 

inverse analysis. 

 

[Table 3 near here] 

 

It is also worth commenting that, in the sampling process, the variation of 5% in the 

parameters (in exponential format as here proposed) leads to a wide variation in the actual 



kinetic coefficient value higher than 37%. On the other hand, this variation on the kinetic 

coefficients may lead to more the 370% of variation on the dimensionless concentration for 

the species TG, DG, MG and B, as can be observed in Figure 6.a. These curves illustrate 

that 5% variation in the parameters is sufficient to create sampling curves (light grey curves) 

that cover a very wide region around the exact solution (solid black line). Figure 6b 

exemplifies the model error curves for the species TG evaluated by the difference between 

the GITTNT=40 and GITTNT=2, respectively, for an illustrative number of 200 samples of 

different vectors p , and therefore 200 calculations of the difference between the accurate 

and approximate solutions. The number of samples, NS, must be evaluated to ensure a 

sampling which provides a fully converged value for the mean and standard deviation of the 

error. In this sense, Figure 6c shows the convergence analysis referring to the mean value 

of the error calculation between models for species TG, where it is noticed that a sampling 

with NS = 1000 is satisfactory to ensure, at this graphical scale, a converged behavior to 

appropriately describe the mean of the error. 

The same convergence analysis was performed for all other species for both 

approximate solutions, GITTNT=2 and 1D-CIEA, even not being presented here. For all cases, 

the sampling number of NS = 1000 was suitable to perform the statistical analysis on the 

approximation error. 

Figure 6d illustrate the converged mean of the error for the species TG and B 

generated for the GITTNT=2 and 1D-CIEA, where it is possible to notice that the error profiles 

have behavior completely distinct from those observed in the average concentration, but both 

GITTNT=2 and 1D-CIEA error curves present similar tendency. 

 

[Figure 6 near here] 

 

For all kinetic coefficients, a non-informative Uniform prior was assumed, while for the 

diffusion coefficients, a truncated Gaussian prior was considered with mean based on a 

correlation available in the literature (Al-Dhubabian, 2005) and standard deviation of 5%. For 

the priors’ range, for all parameters, a wide search interval for the MCMC was set as 50%, 

up and down, of the exact value of each parameter. Tables 4 and 5 present the result for the 

estimation of the parameters “” and “ D ”  carried out with the approximate solutions, GITTNT=2 

and 1D-CIEA, respectively, considering 80 synthetic measurements with a deviation ̂  = 

0.05 for the concentration of species TG, DG, MG and B evaluated in the 20 residence times 



indicated by the sequential experimental design. The MCMC was performed with an 

acceptance rate smaller than 50% for a total of 200000 accepted states. The parameter 

estimation was obtained through the calculation of the mean values and the quantiles of 99% 

for the credibility interval, both calculated from the accepted states after neglecting the 

burning period of 100000 states.  

Tables 4a,b present the results obtained with the approximate solution GITTNT=2, with 

and without taking into account the approximation error information in the estimation 

procedure, respectively. Similarly, Tables 5a,b present the results for the estimations 

obtained via 1D-CIEA, with and without, the approximation error information in the estimation 

procedure, respectively.  

The estimated parameters for the situation where the approximation error information 

was taken into account presented a relative error lower than 7.70% with respect to the original 

exact values for kinetic and diffusion coefficients, and the credibility intervals are enveloping 

all exact reference values of them. Results for the estimation without taking into account the 

approximation error information for both approximate solutions (GITTNT=2 and 1D-CIEA) 

present more expressive relative error such as 8% which suggests a poorer estimation, 

certainly due to the absence of the approximation error information. The credibility intervals 

from the estimation without the approximation error information does not include, for some 

parameters, their exact values and this seems like a deformation of the approximate posterior 

domain which led to less accurate estimations. These cases are illustrated in the table 4b,5b 

in shaded form. 

 

[Table 4a near here] 

[Table 4b near here] 

[Table 5a near here] 

[Table 5b near here] 

 

Figure 7 shows the evolution of the Markov chains of the parameters for the GITTNT=2 

approximate solution, evaluated with the approximation error information considering three 

different initial guesses: black curve for 
0

exact0.5=p p ; red curve for 
0

exact0.8=p p ; and blue curve 

for 
0

exact1.5=p p . These results illustrate the convergence and agreement of the MCMC with 

approximation error model for different initial guesses, including those away from the exact 

value. Even for a wide range of initial guesses, the estimation converges to a region around 



the exact value of the parameters. It is also worth mentioning that a variation of 50% made 

in the initial guesses of the parameter, in the exponential format, represents a variation higher 

than 100% in the actual kinetic coefficients. 

 

[Figure 7 near here] 

 

Figure 8 presents the final comparison for the original accurate result for the 

concentrations of all four measurable species. The obtained concentrations with the exact 

parameters via GITTNT = 40 are presented as the black solid lines, the synthetic measurements 

with a standard deviation of ̂  = 0.05 are presented by the red symbols. The estimated 

concentrations, using the GITTNT=2 solution in the inverse analysis, are presented by the blue 

stars with dashed line, and their respective credibility intervals of 99% are represented by the 

black dashed line. 

Once the equilibrium region in the iterative process of the MCMC is reached, after 

the burning period, the posterior prediction for each species was computed and stored for 

each state of MCMC, and from this posterior sample it was possible to calculate the mean 

and the quantiles of 99% to the estimated value of the concentration and its credibility interval. 

All estimated results show a good adherence to the experimental synthetic data recovering 

most of them, and in particular the agreement between the estimated curve and the exact 

one can be observed. 

 

[Figure 8 near here] 

 

 

5 – Conclusions 

 

This work presents a methodology that allows to markedly reduce the computational 

effort in the estimation of the kinetic and diffusion coefficients for the transesterification reaction 

in microreactors, using approximate solutions and an information about the approximation error. 

The hybrid method GITT was used to construct an accurate solution for the forward problem 

governed by a multicomponent diffusive-convective-reactive nonlinear coupled 3D 

mathematical model, with sufficiently high truncation orders, such as NT = 40, while two 

approximate solutions were considered, one obtained by a 1D model reformulated via an 

improved lumped analysis (CIEA) and another one obtained from the 3D model itself solved by 



GITT but with low truncation order, as low as only two terms (NT = 2) in the eigenfunction 

expansion. 

The “exact” GITT solution (with a high truncation order, NT = 40) was used to perform 

the sensitivity analysis and the sequential experimental design for the problem, where it was 

possible to verify that the representation in exponential format for the kinetic and diffusion 

coefficients, k 10=  and D 10* D= , instead of its original properties k and D*
, increases the 

sensitivity of the new parameters to be estimated as exponents ( and D). From evaluating the 

( )Tdet J J  it was indicated that replicating the experiments in the increasing order of the 

residence time proposed in a list of 40 different residence times as candidates, from 0.5 until 

20min with increment of 0.5min, is not the best alternative to maximize ( )Tdet J J  and a 

sequence of 20 experiments collected and sorted from the original list of 40 candidates was 

presented and considered as the synthetic experimental measurements. 

The approximation error information was obtained from a Monte Carlo simulation of the 

difference between the accurate and approximate solutions performed in a sampling generated 

from uniform distributions with means in the exact values of the parameters and 5%, for more 

and less, as interval limits. From a convergence analysis of the mean of the error, it was found 

a number of samples NS = 1000 as a satisfactory amount to represent the profile of the error 

representation along residence time. 

The likelihood function was constructed using synthetic measurements with standard 

deviation of ̂  = 0.05 for the triglyceride, diglyceride, monoglyceride and biodiesel species, and 

the MCMC was employed using approximate solutions with and without their approximation 

error information. The estimation of the parameters in the exponential format 10
 and 10D

 were 

demonstrated for the case ̂  = 0.05 with relative errors lower than 8.0% compared to the exact 

values when the approximation error was considered. If this approximation is not considered, 

the error on estimative increases and a deformation in the credibility intervals occur and 

consequently the exact values are not recovered for all parameters. The computational time 

was fairly low, reaching as much as 1.71h and 4.72h for CIEA and GITTNT=2, respectively, in 

the microcomputer configuration adopted. The estimated potentials were recovered with strong 

adherence to the simulated data, which indicates that the combination of approximate solutions 

together with the information on approximation errors generates accurate results and fast 

algorithms for the inverse problem analysis. 
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Table 1. Parameters used in the simulation of the concentration of species involved in the 

transesterification reaction with methanol and soybean oil at 25ºC (Al-Dhubabian, 2005, 

Costa Junior and Naveira-Cotta, 2019). 

Table 2. Computational time for accurate and approximate solutions of the forward problem. 

Table 3. Reference values and limits of the parameters   and D  considered in the sampling 

procedure in the error model approach. 

Table 4a. Results for ̂  = 0.05 and credibility interval of 99% using the approximate solution 

from 3D GITTNT=2 and the approximation error information. 

Table 4b. Results for ̂  = 0.05 and credibility interval of 99% using the approximate solution 

from 3D GITTNT=2 without the approximation error information. 

Table 5a. Results for ̂  = 0.05 and credibility interval of 99% using the approximate solution 

from CIEA and the approximation error information. 

Table 5b. Results for ̂  = 0.05 and credibility interval of 99% using the approximate solution 

from CIEA without the approximation error information.   



Figure 1. Scheme of (a) the stratified flow between oil (soybean) and alcohol (methanol) 

within a microreactor; (b) the velocity profile for the fully developed stratified flow in 

microreactors. 

Figure 2. Scheme of the MCMC with Metropolis-Hastings algorithm for parameter estimation 

procedure. 

Figure 3. Accurate and approximate average concentration profile for the species in the 

transesterification reaction: (4a) triglyceride, (4b) alcohol, (4c) diglyceride, (4d) monoglyceride, 

(4e) biodiesel and (4f) glycerol. 

Figure 4. Reduced sensitivity coefficients evaluated for the exponential representation “10
” 

and “10D
” for the kinetic and diffusion coefficients. (6a) TGj ; (6b) Bj ; (6c) DGj  and (6d) MGj . 

Figure 5: Analysis of the determinant of JT
J  investigating (5a) the best arrangement order 

for the four potentials in the matrix J  considering the sequential experimental design and 

(5b) the improvement providing by using of this optimum design. 

Figure 6. Error analysis. (6a) Sampling of error curves for TG with number of samples equal 

to 200, NS = 200;  (6b) Convergence analysis for the mean of the error for TG with 

approximate solution by GITTNT=2; (6c) Mean of the error for TG and B and (6d) for DG and 

MG with approximate solution by GITTNT=2 and by CIEA. 

 

Figure 7. Markov chains for parameters obtained from approximate error approach through 

GITTNT=2 assuming different initial guesses. Black curve: 
0

exact0.5=p p ; red curve: 
0

exact0.8=p p ; 

and Blue curve: 
0

exact1.5=p p ; 

Figure 8: Results for the synthetic data with ̂  = 0.05, estimated curves and their credibility 

intervals of 99% for (8a) triglyceride, (8b) biodiesel, (8c) diglyceride and (8d) monoglyceride. 

 

 

 

 

 

 



Table 1 

Parameter Value Parameter Value 

 TGμ Pa.s  5.825 10-2  Aμ Pa.s  5.47 10-4 

3

TG kg mρ −   
 885  H m  400 10-6 

2

TG

1m sD* −    1.58 10-9  TGH m  356.592 10-6  

1

A

2D m s* −    1.182 10-10 
3 1 1

1k m mol s− −    4.368 10-6 

2

P

1m sD* −     1.38 10-9 
3 1 1

2k m mol s− −    9.623 10-6 

* 3

TGoC mol m−     1014 
3 1 1

3k m mol s− −    1.88 10-5 

AoC  4.4 
3 1 1

4k m mol s− −    1.074 10-4 

TG AQ Q  3.4 
3 1 1

5k m mol s− −    2.117 10-5 

 L m  2.33 10-2 3 1 1

6k m mol s− −    9.0 10-7 

 W m  400 10-6   

 

  



Table 2. 

Solution CPU time(1) 
CPU time reduction with respect to 

the GITTNT=40 solution  

3D –GITTNT=40 101.2328s - 

3D – GITTNT=5 0.1239s 817  

3D – GITTNT=2 0.0156s 6489  

1D – CIEA 0.0070s 14461  

(1) in a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90GHz with 

RAM of 8GB 

 

  



Table 3. 

Parameter Exact value Inferior Limit Superior Limit 

1  -5,35972 -5.62770 -5.09173 

2  -5,01669 -5.26752 -4.76586 

3  -4,72584 -4.96213 -4.48955 

4  -3,96900 -4.16745 -3.77055 

5  -4,67428 -4.90799 -4.44057 

6  -6,04576 -6.34805 -5.74347 

TGD  -8.80134 -9.24141 -8.36128 

AD  -9.92738 -10.4238 -9.43101 

PD  -8.86012 -9.30313 -8.41711 

 

  



 

Table 4a 

  Total computational time(1): 4.32h 

   Search step: 2.0 10-3; Acceptance: 44.00% 

Parameter 
Initial 

Guess 

Exact 

value 
Estimated Minimum Maximum Error (%) 

1  -2.67986 -5.35972 -5.23226 -5.40104 -4.94061 2.37800 

2  -2.50834 -5.01669 -4.95242 -5.07705 -4.69741 1.28105 

3  -2.36292 -4.72584 -4.37707 -4.80132 -4.02673 7.38011 

4  -1.98450 -3.96900 -3.66313 -4.07241 -3.31520 7.70646 

5  -2.33714 -4.67428 -4.61141 -4.69829 -4.51891 1.34496 

6  -3.02288 -6.04576 -6.03114 -6.10960 -5.95595 0.24185 

TGD  -4.40067 -8.80134 -8.89102 -9.76302 -8.07658 1.01893 

AD  -4.96369 -9.92738 -10.27336 -11.21084 -9.85875 3.48511 

PD  -4.43006 -8.86012 -8.27231 -9.06810 -7.62360 6.63435 

(1) in a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90GHz with 

RAM of 8GB 

  



Table 4b. 

  Total computational time(1): 3.57h 

   Search step: 2.0 10-3 ;  Acceptance: 47% 

Parameter 
Initial 

Guess 

Exact 

value 
Estimated Minimum Maximum Error (%) 

1  -2.67986 -5.35972 -5.39955 -5.46939 -5.32628 0.74318 

2  -2.50834 -5.01669 -5.06979 -5.13565 -5.00246 1.05847 

3  -2.36292 -4.72584 -4.77795 -4.87654 -4.66998 1.10254 

4  -1.98450 -3.96900 -4.03333 -4.12840 -3.91947 1.62101 

5  -2.33714 -4.67428 -4.66791 -4.72480 -4.61061 0.13635 

6  -3.02288 -6.04576 -6.02765 -6.08604 -5.97200 0.29951 

TGD  -4.40067 -8.80134 -8.80501 -9.23042 -8.03627 0.04171 

AD  -4.96369 -9.92738 -9.93274 -10.04956 -9.83064 0.05396 

PD  -4.43006 -8.86012 -8.17955 -8.45854 -7.79879 7.68125 

(1) in a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90GHz with 

RAM of 8GB 

 

  



Table 5a 

  Total computational time(1): 1.71h 

   Search step: 2.3 10-3 ;  Acceptance: 41% 

Paramete

r 

Initial 

Guess 

Exact 

value 
Estimated Minimum Maximum Error (%) 

1  -2.67986 -5.35972 -5.29992 -5.40199 -5.20718 1.11559 

2  -2.50834 -5.01669 -4.9868 -5.08809 -4.88792 0.59587 

3  -2.36292 -4.72584 -4.51221 -4.76127 -4.3117 4.52044 

4  -1.98450 -3.96900 -3.76492 -4.0118 -3.55905 5.14180 

5  -2.33714 -4.67428 -4.6038 -4.6931 -4.50385 1.50771 

6  -3.02288 -6.04576 -5.97438 -6.06365 -5.87371 1.18064 

AD  -4.96369 -9.92738 -10.0121 -10.0817 -9.93321 0.85320 

(1) in a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90GHz with 

RAM of 8GB 

  



Table 5b 

  Total computational time(1): 1.70h 

   Search step: 1.5 10-3 ;  Acceptance: 35.4% 

Paramete

r 

Initial 

Guess 

Exact 

value 
Estimated Minimum Maximum Error (%) 

1  -2.67986 -5.35972 -5.22998 -5.27678 -5.18624 2.42063 

2  -2.50834 -5.01669 -4.97135 -5.02172 -4.92484 0.903698 

3  -2.36292 -4.72584 -4.31178 -4.38817 -4.23931 8.76163 

4  -1.9845 -3.96900 -3.62813 -3.71185 -3.54966 8.58831 

5  -2.33714 -4.67428 -4.55212 -4.59894 -4.50604 2.61351 

6  -3.02288 -6.04576 -5.96144 -6.01498 -5.90869 1.39464 

AD  -4.96369 -9.92738 -10.1184 -10.1516 -10.0843 1.92433 

(1) in a DESKTOP-T0TAGFG Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90GHz with RAM 

of 8GB 
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