910 research outputs found

    Gene expression profiling of Mycobacterium avium subsp. paratuberculosis in simulated multi-stress conditions and within THP-1 cells reveals a new kind of interactive intramacrophage behaviour

    Get PDF
    Recent studies have identified in Mycobacterium avium subsp. paratuberculosis (MAP), already known as a pathogen in ruminants, a potential zoonotic agent of some autoimmune diseases in humans. Therefore, considering the possible risk for public health, it is necessary a thorough understanding of MAP's gene expression during infection of human host as well as the identification of its immunogenic and/or virulence factors for the development of appropriate diagnostic and therapeutic tools.In order to characterize MAP's transcriptome during macrophage infection, we analyzed for the first time the whole gene expression of a human derived strain of MAP in simulated intraphagosomal conditions and after intracellular infection of the human macrophage cell line THP-1 by using the DNA-microarray technology. Results showed that MAP shifts its transcriptome to an adaptive metabolism for an anoxic environment and nutrient starvation. It up-regulates several response factors to oxidative stress or intracellular conditions and allows, in terms of transcription, a passive surface peptidoglycan spoliation within the macrophage along with an intensification of the anabolic activity for lipidic membrane structures.These results indicate a possible interactive system between MAP and its host cell based on the internal mimicry unlike other intracellular pathogens, bringing new hypothesis in the virulence and pathogenicity of MAP and its importance in human health

    Integrating Optical Wireless Communication Into an Optical Bifocal Metrology for Aerospace

    Get PDF
    Recently an innovative bifocal optical metrology method was proposed for space applications (e.g., rendez-vous and docking), based on unmodulated white LEDs. Here we design, realize, and test a solution that upgrades the metrology to include a digital communication feature, with no modification of the optical elements of the original system: indeed, the scheme exploits the same optical sources that are needed for metrology, which are now also working as optical antennas as their intensity is now modulated. At the receiver side, the conventional camera is now sided by a common photodiode. The system provides unidirectional data communication at 10 kbit/s speed. It is designed to support manoeuvres up to 400 m distance. The lab tests confirm the effectiveness of the proposed solutions, showing correct data transfer without any noticeable degradation of the metrology system

    Easy Scheme Outlining the Various Morphological and Vascular Abnormalities of the Lymph Node Structure Associated with Recent COVID-19 Vaccination, Each with a Different Clinical/Diagnostic Management

    Get PDF
    Throughout this recent ongoing SARS-CoV-2 pandemic, the European Society of Breast Imaging have surely contributed in improving the management of unilateral axillary adenopathy appearance homolaterally to the side of vaccine inoculation. After considering the patient's COVID-19 history of vaccination, our group produced a day-to-day scheme that evaluates meticulously the probability of mammary malignancy, according to the lymph node characteristics including vascular abnormalities. It comprises of a UN (ultrasound node) score ranging from 2 to 5, that increases with the suspicion of malignancy. In this setting and in view of the additional incoming COVID-19 boost-dose vaccinations, we believe our model could be of great utility to radiologist when assessing patients whom do not have a straight forward diagnosis, in order to reduce breast cancer missed diagnosis, avoid delaying vaccinations, reduce rescheduling of breast imaging examinations and lastly avoid unnecessary lymph node biopsies

    Chiral symmetry restoration, eigenvalue density of Dirac operator and axial U(1) anomaly at finite temperature

    Get PDF
    We reconsider constraints on the eigenvalue density of the Dirac operator in the chiral symmetric phase of 2 flavor QCD at finite temperature. To avoid possible ultra-violet(UV) divergences, we work on a lattice, employing the overlap Dirac operator, which ensures the exact "chiral" symmetry at finite lattice spacings. Studying multi-point correlation functions in various channels and taking their thermodynamical limit (and then taking the chiral limit), we obtain stronger constraints than those found in the previous studies: both the eigenvalue density at the origin and its first and second derivatives vanish in the chiral limit of 2 flavor QCD. In addition we show that the axial U(1) anomaly becomes invisible in susceptibilities of scalar and pseudo scalar mesons, suggesting that the 2nd order chiral phase transition with the O(4) scaling is not realized in 2 flavor QCD. Possible lattice artifacts when non-chiral lattice Dirac operator is employed are briefly discussed.Comment: 39 pages, 1 figure(2 eps files), a version published in PR

    Virtual user in the IoT: definition, technologies and experiments

    Get PDF
    Virtualization technologies are characterizing major advancements in the Internet of Things (IoT) arena, as they allow for achieving a cyber-physical world where everything can be found, activated, probed, interconnected, and updated at both the virtual and the physical levels. We believe these technologies should apply to human users other than things, bringing us the concept of the Virtual User (VU). This should represent the virtual counterpart of the IoT users with the ultimate goal of: (i) avoiding the user from having the burden of following the tedious processes of setting, configuring and updating IoT services the user is involved in; (ii) acting on behalf of the user when basic operations are required; (iii) exploiting to the best of its ability the IoT potentialities, always taking always account the user profile and interests. Accordingly, the VU is a complex representation of the user and acts as a proxy in between the virtual objects and IoT services and application; to this, it includes the following major functionalities: user profiling, authorization management, quality of experience modeling and management, social networking and context management. In this respect, the major contributions of this paper are to: provide the definition of VU, present the major functionalities, discuss the legal issues related to its introduction, provide some implementation details, and analyze key performance aspects in terms of the capability of the VU to correctly identify the user profile and context

    Digital tomosynthesis spot view in architectural distortions: outcomes in management and radiation dose

    Get PDF
    Purpose To evaluate if digital breast tomosynthesis spot compression view (DBT-SCV) could be an additional projection to confirm or deny architectural distortions (ADs) detected by digital breast tomosynthesis (DBT) while assessing the average glandular radiation dose. Methods This is a retrospective cohort study enrolling 8864 DBT exams, of which only cases detecting primary AD and with BI-RADS 2-5 score were considered. Seventy-one AD cases examined with DBT-SCV, US and MRI were evaluated for correlation in terms of BI-RADS score; variables among exams were assessed for inter-relationships. Results Of all ADs identified at DBT, biopsy yielded malignancy in only 38%. PPV in identifying malignancy of ADs was higher for DBT-SCV than DBT (p < 0.05); the NPV of DBT-SCV was 94%. The difference between DBT and DBT-SCV in the detection of benign ADs was statistically significant (p < 0.05). AD without US or MRI confirmation was less likely to represent malignancy (p < 0.05). In detecting malignant cases of ADs, both DBT and DBT-SCV were strongly correlated with US and RM (Kappa > 0.90). In identifying benign cases of ADs, DBT-SCV was poorly/moderately correlated with US and RM (Kappa 0.25 and 0.66); DBT was negatively correlated with US and MRI. Conclusion DBT-SCV could be useful to better characterize AD firstly identified by DBT, keeping dose levels within the reference limits. If AD is detected by DBT without an US or MRI correlate, that is not confirmed by DBT-SCV, a "wait and see " approach can be applied to reduce unnecessary biopsy

    MR breast imaging: A comparative analysis of conventional and parallel imaging acquisition [RM delle mammelle: Confronto tra tecnica convenzionale ed imaging parallelo]

    Get PDF
    Purpose. The objective of this study was to compare conventional breast magnetic resonance imaging (MRI) with breast MRI acquired with the sensitivity-encoding (SENSE) technique on a 1.5-T MRI scanner in the same patient, on the basis of image quality and kinetics analysis. Materials and methods. Thirty-one patients with suspicious mammography and US findings were included in the study. Conventional breast MRI consisted of the following sequences: T1 (matrix, 288x512); T2 (matrix 225x512); short tau inversion recovery (STIR) (matrix 320x224) and dynamic T1 [2D fast-field echo (FFE)] (matrix 256x512; temporal resolution =80 s). The SENSE technique included the following sequences: T1 (matrix 512x512); T2 (matrix 512x512); short-tau inversion recovery (STIR) (matrix 320x224); dynamic T1 (3D FFE) (matrix 512x512, with a temporal resolution ≤70 s). Image quality was graded on a four-point scale, and the mean scores given to each sequence were compared between the two protocols. The relative enhancement rates and the qualitative features of the signal intensity (SI)/time curves were also compared between the two protocols. Results. The readers found 64 contrast-enhanced lesions in 31 patients. Nineteen patients had a total of 27 malignant lesions. In the remaining 12 patients, 37 benign lesions were found. No significant differences between the two protocols were observed with regard to the mean relative enhancement rates and the qualitative features of the SI/time curves. In detail, the mean image quality scores were higher for SENSE imaging (p<0.05). The mean image quality score for the T1 and T2 morphological sequences were comparable. In contrast, the quality scores for the STIR images differed significantly between the two protocols (p<0.001), and a significant difference was also observed when comparing the T1 postcontrast images (p<0.001). Conclusions. Our data suggest that the SENSE imaging protocol applied in our study is superior to conventional imaging with regard to image quality, especially for T1 postcontrast and STIR images. SENSE imaging protocols may provide an alternative to conventional sequences for contrast-enhanced MRI of the breast using 1.5-T MR scanners. © 2008 Springer-Verlag

    FEM analysis of RF breast ablation: Multiprobe versus cool-tip electrode

    Get PDF
    Background: Radio-frequency ablation (RFA) has recently received much attention as an effective minimally invasive strategy for the local treatment of tumors. The purpose of this study was to evaluate the efficacy of single-needle cool-tip RF breast ablation in terms of temperature distribution and duration of the procedure as compared to multiprobe RF breast ablation. Materials and Methods: Two different commercially available radiofrequency ablation needle electrodes were compared. Finite-element method (FEM) models were developed to simulate the thermoablation procedures. A series of ex vivo radiofrequency thermal lesions were induced to check the response of the FEM calculations. Results: Data obtained from FEM models and from ex vivo procedures showed that cool-tip RF breast ablation assures better performances than multiprobe RF breast ablation in terms of temperature distribution and duration of the procedure. Histopathological analysis of the cool-tip RF thermoablated specimens showed successful induction of coagulation necrosis in the thermoablated specimens. Conclusion: Data obtained from FEM models and from ex vivo procedures suggest that the proposed cool-tip RF breast ablation may kill more tumor cells in vivo with a single application than the multiprobe RF breast ablation
    • …
    corecore