6 research outputs found

    Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes

    Get PDF
    Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/−) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/− hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure

    Role of adenylyl cyclase subtypes, inhibitory G protein and phosphodiesterases to regulate the β1-AR-mediated inotropic response

    No full text
    In the heart, activation of the sympathetic nervous system increases the force of contraction, heart rate and relaxation primarily through activation of β-adrenergic G-protein-coupled receptors (βAR). The β1AR is the dominant subtype in the heart and most of the functional responses to βAR-agonists are attributed to β1AR and β2ARs. Although both β1AR and β2ARs respond to noradrenaline and adrenaline, subcellular compartmentation of the downstream signaling proteins allows for distinct functional properties which mediate a variety of biological roles. Compartmentation is achieved by various proteins that regulate the signaling pathway spatially and temporally. β1AR signaling and its ability to increase contractile force is regulated by at least inhibitory G protein (Gi), phosphodiesterases (PDEs) and adenylyl cyclase (AC), of which isoforms 5 and 6 are most prevalent in the heart. The first aim of this study was to determine if the β1AR-mediated inotropic response was dependent upon a particular AC subtype. Second, determine if a tonic inhibitory effect of Gi that we previously discovered was specific to either AC5 or AC6. Lastly, elucidate the role of PDE3 and PDE4 to regulate β1AR-mediated increases in cAMP levels and to correlate them with the β1AR-mediated inotropic response. To this end, we utilized AC5 and AC6 knockout mice. Our data indicate that the β1AR-mediated inotropic response can be mediated through either AC5 or AC6 isoforms, implying functional redundancy. Furthermore, the β1AR-mediated functional response through both AC isoforms is regulated by receptor independent constitutively active Gi, and lastly we demonstrate that PDE4 is the primary regulator of β1AR signaling through AC6. Taken together, these data suggest that subcellular compartmentation of the upstream cAMP signaling pathway leads to different downstream physiological responses

    Hypothermia elongates the contraction-relaxation cycle in explanted human failing heart decreasing the time for ventricular filling during diastole

    No full text
    Targeted temperature management is part of the standardized treatment for patients in cardiac arrest. Hypothermia decreases cerebral oxygen consumption and induces bradycardia; thus, increasing the heart rate may be considered to maintain cardiac output. We hypothesized that increasing heart rate during hypothermia would impair diastolic function. Human left ventricular trabeculae obtained from explanted hearts of patients with terminal heart failure were stimulated at 0.5 Hz, and contraction-relaxation cycles were recorded. Maximal developed force (Fmax), maximal rate of development of force [(dF/dt)max], time to peak force (TPF), time to 80% relaxation (TR80), and relaxation time (RT = TR80 − TPF) were measured at 37, 33, 31, and 29°C. At these temperatures, stimulation frequency was increased from 0.5 to 1.0 and to 1.5 Hz. At 1.5 Hz, concentration-response curves for the β-adrenergic receptor (β-AR) agonist isoproterenol were performed. Fmax, TPF, and RT increased when temperature was lowered, whereas (dF/dt)max decreased. At all temperatures, increasing stimulation frequency increased Fmax and (dF/dt)max, whereas TPF and RT decreased. At 31 and 29°C, resting tension increased at 1.5 Hz, which was ameliorated by β-AR stimulation. At all temperatures, maximal β-AR stimulation increased Fmax, (dF/dt)max, and maximal systolic force, whereas resting tension decreased progressively with lowering temperature. β-AR stimulation reduced TPF and RT to the same extent at all temperatures, despite the more elongated contraction-relaxation cycle at lower temperatures. Diastolic dysfunction during hypothermia results from an elongation of the contraction-relaxation cycle, which decreases the time for ventricular filling. Hypothermic bradycardia protects the heart from diastolic dysfunction and increasing the heart rate during hypothermia should be avoided

    Constitutive inhibitory G protein activity upon adenylyl cyclase-dependent cardiac contractility is limited to adenylyl cyclase type 6

    No full text
    Purpose We previously reported that inhibitory G protein (Gi) exerts intrinsic receptor-independent inhibitory activity upon adenylyl cyclase (AC) that regulates contractile force in rat ventricle. The two major subtypes of AC in the heart are AC5 and AC6. The aim of this study was to determine if this intrinsic Gi inhibition regulating contractile force is AC subtype selective. Methods Wild-type (WT), AC5 knockout (AC5KO) and AC6 knockout (AC6KO) mice were injected with pertussis toxin (PTX) to inactivate Gi or saline (control).Three days after injection, we evaluated the effect of simultaneous inhibition of phosphodiesterases (PDE) 3 and 4 with cilostamide and rolipram respectively upon in vivo and ex vivo left ventricular (LV) contractile function. Also, changes in the level of cAMP were measured in left ventricular homogenates and at the membrane surface in cardiomyocytes obtained from the same mouse strains expressing the cAMP sensor pmEPAC1 using fluorescence resonance energy transfer (FRET). Results Simultaneous PDE3 and PDE4 inhibition increased in vivo and ex vivo rate of LV contractility only in PTX-treated WT and AC5KO mice but not in saline-treated controls. Likewise, Simultaneous PDE3 and PDE4 inhibition elevated total cAMP levels in PTX-treated WT and AC5KO mice compared to saline-treated controls. In contrast, simultaneous PDE3 and PDE4 inhibition did not increase in vivo or ex vivo rate of LV contractility or cAMP levels in PTX-treated AC6KO mice compared to saline-treated controls. Using FRET analysis, an increase of cAMP level was detected at the membrane of cardiomyocytes after simultaneous PDE3 and PDE4 inhibition in WT and AC5KO but not AC6KO. These FRET data are consistent with the functional data indicating that AC6 activity and PTX inhibition of Gi is necessary for simultaneous inhibition of PDE3 and PDE4 to elicit an increase in contractility. Conclusions Together, these data suggest that AC6 is tightly regulated by intrinsic receptor-independent Gi activity, thus providing a mechanism for maintaining low basal cAMP levels in the functional compartment that regulates contractility

    Compartmentation of cGMP Signaling in Induced Pluripotent Stem Cell Derived Cardiomyocytes during Prolonged Culture

    No full text
    The therapeutic benefit of stimulating the cGMP pathway as a form of treatment to combat heart failure, as well as other fibrotic pathologies, has become well established. However, the development and signal compartmentation of this crucial pathway has so far been overlooked. We studied how the three main cGMP pathways, namely, nitric oxide (NO)-cGMP, natriuretic peptide (NP)-cGMP, and β3-adrenoreceptor (AR)-cGMP, mature over time in culture during cardiomyocyte differentiation from human pluripotent stem cells (hPSC-CMs). After introducing a cGMP sensor for Förster Resonance Energy Transfer (FRET) microscopy, we used selective phosphodiesterase (PDE) inhibition to reveal cGMP signal compartmentation in hPSC-CMs at various times of culture. Methyl-β-cyclodextrin was employed to remove cholesterol and thus to destroy caveolae in these cells, where physical cGMP signaling compartmentalization is known to occur in adult cardiomyocytes. We identified PDE3 as regulator of both the NO-cGMP and NP-cGMP pathway in the early stages of culture. At the late stage, the role of the NO-cGMP pathway diminished, and it was predominantly regulated by PDE1, PDE2, and PDE5. The NP-cGMP pathway shows unrestricted locally and unregulated cGMP signaling. Lastly, we observed that maturation of the β3-AR-cGMP pathway in prolonged cultures of hPSC-CMs depends on the accumulation of caveolae. Overall, this study highlighted the importance of structural development for the necessary compartmentation of the cGMP pathway in maturing hPSC-CMs

    Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes.

    No full text
    Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure
    corecore