95 research outputs found

    "Opening that Trail in Their Mind": Communicative Practice of Trailblazing

    Get PDF
    Trailblazing can be understood as a process of negotiating communicatively constructed realities from the vantage of the social margins or an under-represented identity. An understanding of this process from the perspective of those situated in the margins encourages a line of questioning that delves into the communicative struggle about the self in relation to mental schema, past events and expectations for the future. How individuals communicate about themselves and express their identity is rooted in what individuals perceive as possible in light of social norms, expectations and standards. Pierre Bourdieu presents several key concepts, which create an outline of practice that guide our thought processes, how we behave and communicate about identity. A review of these concepts presents a foundation from which we can begin to make sense of the components that shape the trailblazing experience. Trailblazing research expands our understanding of what it means to be an agent of change. Specific nuances between trailblazers and pioneers are presented and discussed as typologies of agents of change. This project focuses on the specific communicative practices of female baseball players and organizers from across the United States as they negotiate expectations of conformity and aspirations for change.Using the theoretical lens and concepts of Bourdieu provides a unique opportunity for understanding the construction of an identity that is trying to make way through an organization embedded in a field that is dominated by a particular group

    "Opening that Trail in Their Mind": Communicative Practice of Trailblazing

    Get PDF
    Trailblazing can be understood as a process of negotiating communicatively constructed realities from the vantage of the social margins or an under-represented identity. An understanding of this process from the perspective of those situated in the margins encourages a line of questioning that delves into the communicative struggle about the self in relation to mental schema, past events and expectations for the future. How individuals communicate about themselves and express their identity is rooted in what individuals perceive as possible in light of social norms, expectations and standards. Pierre Bourdieu presents several key concepts, which create an outline of practice that guide our thought processes, how we behave and communicate about identity. A review of these concepts presents a foundation from which we can begin to make sense of the components that shape the trailblazing experience. Trailblazing research expands our understanding of what it means to be an agent of change. Specific nuances between trailblazers and pioneers are presented and discussed as typologies of agents of change. This project focuses on the specific communicative practices of female baseball players and organizers from across the United States as they negotiate expectations of conformity and aspirations for change.Using the theoretical lens and concepts of Bourdieu provides a unique opportunity for understanding the construction of an identity that is trying to make way through an organization embedded in a field that is dominated by a particular group

    Osteoinductive PolyHIPE Foams as Injectable Bone Grafts

    Get PDF
    We have recently fabricated biodegradable polyHIPEs as injectable bone grafts and characterized the mechanical properties, pore architecture, and cure rates. In this study, calcium phosphate nanoparticles and demineralized bone matrix (DBM) particles were incorporated into injectable polyHIPE foams to promote osteoblastic differentiation of mesenchymal stem cells (MSCs). Upon incorporation of each type of particle, stable monoliths were formed with compressive properties comparable to control polyHIPEs. Pore size quantification indicated a negligible effect of all particles on emulsion stability and resulting pore architecture. Alizarin red calcium staining illustrated the incorporation of calcium phosphate particles at the pore surface, while picrosirius red collagen staining illustrated collagen-rich DBM particles within the monoliths. Osteoinductive particles had a negligible effect on the compressive modulus (∼30 MPa), which remained comparable to human cancellous bone values. All polyHIPE compositions promoted human MSC viability (∼90%) through 2 weeks. Furthermore, gene expression analysis indicated the ability of all polyHIPE compositions to promote osteogenic differentiation through the upregulation of bone-specific markers compared to a time zero control. These findings illustrate the potential for these osteoinductive polyHIPEs to promote osteogenesis and validate future in vivo evaluation. Overall, this work demonstrates the ability to incorporate a range of bioactive components into propylene fumarate dimethacrylate-based injectable polyHIPEs to increase cellular interactions and direct specific behavior without compromising scaffold architecture and resulting properties for various tissue engineering applications

    Evaluation of saponin loaded gellan gum hydrogel scaffold for cartilage regeneration

    Get PDF
    Several concentrations of saponin (Sa), which is water-soluble, were fabricated well with gellan gum (GG) solution. Sa, found in many plants like clematis and ginseng, has long been used in traditional chinese medicine to treat joint diseases including osteoarthritis. Also it has its ability of anti-inflammatory, antioxidant and anti-cancer. GG hydrogel is suitable as a cell encapsulating agent in the field of cartilage regeneration because of its easy processing and biocompatibility. In this study, GG hydrogel scaffolds with different concentration of Sa were conducted for analysis by SEM, FT-IR, compressive strength, water uptake, degradation rate, MTT assay, mRNA expression. It was observed that 0.025 wt% Sa/GG hydrogel scaffold shows good morphology, cell proliferation and mRNA expression results. The composite material supports cell growth covered with extracellular matrix (ECM) with maintaining its function. As a result, incorporation of Sa loaded with GG hydrogel scaffolds had positive result up to 0.025 wt% in cartilage regeneration.This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C2996).info:eu-repo/semantics/publishedVersio

    Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels

    Get PDF
    Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. Statement of Significance Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications

    Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study

    Get PDF
    Introduction Current emergency care systems are not optimized to respond to multiple and complex problems associated with frailty. Services may require reconfiguration to effectively deliver comprehensive frailty care, yet its prevalence and variation are poorly understood. This study primarily determined the prevalence of frailty among older people attending emergency care. Methods This cross-sectional study used a flash mob approach to collect observational European emergency care data over a 24-h period (04 July 2023). Sites were identified through the European Task Force for Geriatric Emergency Medicine collaboration and social media. Data were collected for all individuals aged 65 + who attended emergency care, and for all adults aged 18 + at a subset of sites. Variables included demographics, Clinical Frailty Scale (CFS), vital signs, and disposition. European and national frailty prevalence was determined with proportions with each CFS level and with dichotomized CFS 5 + (mild or more severe frailty). Results Sixty-two sites in fourteen European countries recruited five thousand seven hundred eighty-five individuals. 40% of 3479 older people had at least mild frailty, with countries ranging from 26 to 51%. They had median age 77 (IQR, 13) years and 53% were female. Across 22 sites observing all adult attenders, older people living with frailty comprised 14%. Conclusion 40% of older people using European emergency care had CFS 5 + . Frailty prevalence varied widely among European care systems. These differences likely reflected entrance selection and provide windows of opportunity for system configuration and workforce planning

    Porous microparticles with high loading efficiencies

    No full text
    An improved polymer delivery system is described which provides polymeric microparticle compositions and porous microparticles formed therefrom. Pore size, pore architecture as well as particle size are also controllable. In some embodiments, both the polymeric microparticle compositions and porous microparticles formed therefrom encapsulate at least one substance, such as a biologic substance (one having biologic activity and/or compatible with a biologic system). The encapsulation occurs prior to polymerization. The amount of substance that is encapsulated may be controlled by the described methods. Said methods do not emply organic solvents. As such, the fabrication occurs in a solvent-free system.U

    Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    No full text
    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.U
    corecore