223 research outputs found

    Non-unique flows in macroscopic first-order intersection models

    Get PDF
    Currently, most intersection models embedded in macroscopic Dynamic Network Loading (DNL) models are not well suited for urban and regional applications. This is so because so-called internal intersection supply constraints, bounding flows due to crossing and merging conflicts inherent to the intersection itself, are missing. This paper discusses the problems that arise upon introducing such constraints, which result firstly from a lack of empirical knowledge on driver behavior at general intersections under varying conditions and the incompatibility of existing theories that describe this behavior with macroscopic DNL. A generic framework for the distribution of (internal) supply is adopted, which is based on the definition of priority parameters that describe the strength of each flow in the competition for a particular supply. Secondly, using this representation, it is shown that intersection models even under realistic behavioral assumptions and in simple configurations (i.e. without internal supply constraints) can produce non-unique flow patterns under identical boundary conditions. This solution non-uniqueness is thoroughly discussed and conceptual approaches on how it can be dealt with in the model are provided. Also the spatial modeling point of view is considered as opposed to the more traditional point-like modeling. It is revealed that the undesirable model properties are not solved but rather enhanced when diverting from a point-like to a spatial modeling approach. Therefore, we see more merit in continuing the point-like approach for the future development of sophisticated intersection models. Necessary research steps along these lines are formulated

    Role of lateral and feedback connections in primary visual cortex in the processing of spatiotemporal regularity: a TMS study

    Get PDF
    Our human visual system exploits spatiotemporal regularity to interpret incoming visual signals. With a dynamic stimulus sequence of four collinear bars (predictors) appearing consecutively toward the fovea, followed by a target bar with varying contrasts, we have previously found that this predictable spatiotemporal stimulus structure enhances target detection performance and its underlying neural process starts in the primary visual cortex (area V1). However, the relative contribution of V1 lateral and feedback connections in the processing of spatiotemporal regularity remains unclear. In this study we measured human contrast detection of a briefly presented foveal target that was embedded in a dynamic collinear predictor-target sequence. Transcranial magnetic stimulation (TMS) was used to selectively disrupt V1 horizontal and feedback connections in the processing of predictors. The coil was positioned over a cortical location corresponding to the location of the last predictor prior to target onset. Single-pulse TMS at an intensity of 10% below phosphene threshold was delivered at 20 or 90ms after the predictor onset. Our analysis revealed that the delivery of TMS at both time windows equally reduced, but did not abolish, the facilitation effect of the predictors on target detection. Furthermore, if the predictors’ ordination was randomized to suppress V1 lateral connections, the TMS disruption was significantly more evident at 20ms than at 90ms time window. We suggest that both lateral and feedback connections contribute to the encoding of spatiotemporal regularity in V1. These findings develop understanding of how our visual system exploits spatiotemporal regularity to facilitate the efficiency of visual perception

    Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-beta plaques

    Get PDF
    BACKGROUND: Increasing evidence for a direct contribution of astrocytes to neuroinflammatory and neurodegenerative processes causing Alzheimer’s disease comes from molecular and functional studies in rodent models. However, these models may not fully recapitulate human disease as human and rodent astrocytes differ considerably in morphology, functionality, and gene expression. RESULTS: To address these challenges, we established an approach to study human astrocytes within the mouse brain by transplanting human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains. Xenografted hiPSC-derived astrocyte progenitors differentiated into astrocytes that integrated functionally within the mouse host brain and matured in a cell-autonomous way retaining human-specific morphologies, unique features, and physiological properties. In Alzheimer´s chimeric brains, transplanted hiPSC-derived astrocytes responded to the presence of amyloid plaques undergoing morphological changes that seemed independent of the APOE allelic background. CONCLUSIONS: In sum, we describe here a promising approach that consist of transplanting patient-derived and genetically modified astrocytes into the mouse brain to study human astrocyte pathophysiology in the context of Alzheimer´s disease

    Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy

    Get PDF
    SummarySynapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity

    A chronometric exploration of high-resolution ‘sensitive TMS masking’ effects on subjective and objective measures of vision

    Get PDF
    Transcranial magnetic stimulation (TMS) can induce masking by interfering with ongoing neural activity in early visual cortex. Previous work has explored the chronometry of occipital involvement in vision by using single pulses of TMS with high temporal resolution. However, conventionally TMS intensities have been high and the only measure used to evaluate masking was objective in nature. Recent studies have begun to incorporate subjective measures of vision, alongside objective ones. The current study goes beyond previous work in two regards. First, we explored both objective vision (an orientation discrimination task) and subjective vision (a stimulus visibility rating on a four-point scale), across a wide range of time windows with high temporal resolution. Second, we used a very sensitive TMS-masking paradigm: stimulation was at relatively low TMS intensities, with a figure-8 coil, and the small stimulus was difficult to discriminate already at baseline level. We hypothesized that this should increase the effective temporal resolution of our paradigm. Perhaps for this reason, we are able to report a rather interesting masking curve. Within the classical-masking time window, previously reported to encompass broad SOAs anywhere between 60 and 120 ms, we report not one, but at least two dips in objective performance, with no masking in-between. The subjective measure of vision did not mirror this pattern. These preliminary data from our exploratory design suggest that, with sensitive TMS masking, we might be able to reveal visual processes in early visual cortex previously unreported

    Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments

    Get PDF
    BACKGROUND: The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer’s disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase. METHODS: We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. RESULTS: Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aβ levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. CONCLUSIONS: TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover
    corecore