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An analysis of rotation matrix and colour constancy data
augmentation in classifying images of animals
Emmanuel Okafor, Lambert Schomaker and Marco A. Wiering

Institute of Artificial Intelligence and Cognitive Engineering (ALICE), University of Groningen, Groningen, The
Netherlands

ABSTRACT
In this paper, we examine a novel data augmentation (DA) method
that transforms an image into a new image containing multiple
rotated copies of the original image. The DA method creates a
grid of n× n cells, in which each cell contains a different
randomly rotated image and introduces a natural background in
the newly created image. We investigate the use of deep learning
to assess the classification performance on the rotation matrix or
original dataset with colour constancy versions of the datasets.
For the colour constancy methods, we use two well-known retinex
techniques: the multi-scale retinex and the multi-scale retinex
with colour restoration for enhancing both original (ORIG) and
rotation matrix (ROT) images. We perform experiments on three
datasets containing images of animals, from which the first
dataset is collected by us and contains aerial images of cows or
non-cow backgrounds. To classify the Aerial UAV images, we use a
convolutional neural network (CNN) architecture and compare
two loss functions (hinge loss and cross-entropy loss).
Additionally, we compare the CNN to classical feature-based
techniques combined with a k-nearest neighbour classifier or a
support vector machine. The best approach is then used to
examine the colour constancy DA variants, ORIG and ROT-DA
alone for three datasets (Aerial UAV, Bird-600 and Croatia fish).
The results show that the rotation matrix data augmentation is
very helpful for the Aerial UAV dataset. Furthermore, the colour
constancy data augmentation is helpful for the Bird-600 dataset.
Finally, the results show that the fine-tuned CNNs significantly
outperform the CNNs trained from scratch on the Croatia fish and
the Bird-600 datasets, and obtain very high accuracies on the
Aerial UAV and Bird-600 datasets.
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1. Introduction

Data augmentation (DA) has often been used in deep learning to increase the number of
training images to obtain high classification accuracies. Previous approaches to data aug-
mentation use cropping, rotation, illumination, scaling and colour casting for creating
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more training images. A recent research by Pawara, Okafor, Schomaker, and Wiering
(2017) examined the classification performances of two convolutional neural network
(CNN) methods (AlexNet and GoogleNet) with several DA techniques for different plant
datasets. This research investigates the rotation matrix and colour constancy algorithms
as methods for data augmentation with the objective to use one or more machine learn-
ing algorithms to classify images within three animal datasets.

Some researchers have considered rotating plant images in different angular positions
while the effect of white or zero pixel values introduced during rotation of the images was
not discussed (Ghazi, Yanikoglu, & Aptoula, 2017; Pawara et al., 2017), however, their
research show that DA techniques can be used to reduce overfitting and improve the
overall performance of the CNN models. A recent study investigated the relevance of
the radial transform (Salehinejad, Valaee, Dowdell, & Barfett, 2018) as a method of data
augmentation on character and medical multi-modal images. Additionally the research
by Sladojevic, Arsenovic, Anderla, Culibrk, and Stefanovic (2016) attempts to develop a
plant disease recognition CNN model with three image transformation techniques:
affine, perspective and rotation.

In contrast to the rotation technique as mentioned earlier, the idea of colour constancy
algorithms has widely been studied in image processing and computer vision as a method
for enhancing the quality of an image while preserving the colour information of an object
under varying illumination conditions. The authors in Rahman, Jobson, and Woodell (1996)
and Jobson, Rahman, and Woodell (1997) have proposed a multi-scale retinex (MSR)
method, which has the prowess to achieve excellent colour rendition and dynamic
range compression as opposed to their previous works on the single scale retinex (SSR).
An improvement was made in the MSR by the authors in Rahman, Jobson, and Woodell
(2004), who incorporated colour restoration to produce a multi-scale retinex for colour res-
toration (MSRCR). Several improvements have been made on MSR to produce variants of
the MSR algorithm. One of such methods is the combination of MSR with chromaticity
preservation (Petro, Sbert, & Morel, 2014). Another modification on the MSR is the incor-
poration of the Autolevel algorithm that removes outliers, improves the contrast level
within an image and shows computational improvements when used with a graphical pro-
cessing unit (Jiang, Woodell, & Jobson, 2015).

However, the unification of colour constancy and rotation matrix algorithms as a method
of data augmentation has received limited attention. This paper extends the research by
Okafor, Smit, Schomaker, and Wiering (2017) by considering the proposed n× n rotation
algorithm together with colour constancy techniques as methods of data augmentation.
The proposed techniques are examined on two animal datasets (Croatia fish (Jaeger et al.,
2015) and Bird-600 (Lazebnik, Schmid, & Ponce, 2005)) and an aerial image dataset collected
using an unmanned aerial vehicle (UAV) (Okafor et al., 2017). The use of UAVs has a lot of
potential for precision agriculture as well as for livestock monitoring. A previous study
(Zhang & Kovacs, 2012) recommended that the combination between precision agriculture
and remote sensing and UAV methods can be very beneficial for agricultural purposes. Other
research (Katsigiannis, Misopolinos, Liakopoulos, Alexandridis, & Zalidis, 2016; López-Grana-
dos et al., 2016; Lukas et al., 2016) has examined this area with the use of UAVs for
different tasks. A novel area of research is recognizing aerial imagery with the use of deep
neural networks. The study in Lin, Cui, Belongie, and Hays (2015) demonstrates that the
use of a CNN for ground-to-aerial localization yielded a good performance on some datasets.
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Another interesting study is the use of deep reinforcement learning for active localization of
cows (Caicedo & Lazebnik, 2015). Next to the task of localization, there exists some recent
research on the use of UAVs for motion detection and tracking of objects. The study in
Fang, Du, Abdoola, Djouani, and Richards (2016) analysed the merits of the use of optical
flow with a coarse segmentation approach for aerial motion detection of animals from
several videos. Furthermore, in Gonzalez et al. (2016) the authors extended the idea of
using UAVs with object detection and tracking algorithms for monitoring wildlife animals.
Another approach is detection and tracking of humans from UAV images using local
feature extractors and support vector machines (SVMs) (Imamura, Okamoto, & Lee, 2016).

The idea of data augmentation has been successfully applied to UAV data as well. In
Jeon et al. (2017), the authors studied augmentation of drone sounds using a publicly
available dataset that contains several real-life environmental sounds. Furthermore, the
research by Charalambous and Bharath (2016) explored the use of a DA method for train-
ing a deep learning algorithm for recognizing gaits. Another interesting use of data aug-
mentation is the development of a model for 3D pose estimation using motion capture
data (Rogez & Schmid, 2016). However, limited research has examined colour constancy
as a method of data augmentation. The research by Galdran et al. (2017) proposed a
DA method adapted for skin lesion analysis with neural networks with emphasis on the
use of colour constancy to normalize the colour information of images within a training
set. Moreover, a research has redeveloped colour constancy as a neural network regression
technique for estimating the colour of a light source (Lou, Gevers, Hu, & Lucassen, 2015).

Most of the previous DA techniques transform a training image to multiple training
images using techniques such as cropping, contrast, illumination, mirroring, colour
casting, scaling and rotation. In this paper, we extend the DA method proposed in
Okafor et al. (2017) that transforms a single input image to another image containing
n× n rotated copies of the original (ORIG) image. This method enhances the amount of
information in an image. Additionally, this paper investigates the use of two well-known
colour constancy methods (MSR and MSRCR) for creating more samples of both original
and rotation matrix versions of three datasets: Aerial UAV (Okafor et al., 2017), Croatia
fish (Jaeger et al., 2015) and Bird-600 (Lazebnik et al., 2005). The objective of this paper
is to use CNNs to assess the classification performance on several variants of the used data-
sets. Moreover, our study inspects if the novel DA methods lead to higher classification
accuracies when combined with different machine learning techniques such as CNNs or
classical feature descriptors on a novel dataset containing aerial images of animals.

Contributions: This paper describes a novel DA technique (Okafor et al., 2017) that trans-
forms a train or test image into a novel single image with multiple randomly rotated copies
of the input image. To combine the different rotated images, the proposed method puts
them in a grid and adds realistic background pixels to glue them together. This approach
presents some merits: (1) it provides more informative images which may aid to yield
higher accuracies and (2) the method can also be used to perform data augmentation
on test images in the operational stage. The utility of the proposed approach is evaluated
by using a CNN which is derived from the original GoogleNet (Szegedy et al., 2015) archi-
tecture by keeping only several inception modules. For training this CNN, we evaluate if
there are differences in using the cross-entropy loss function (softmax classifier) compared
to using a hinge loss function. Furthermore, we compared the CNNs to several classical
computer vision techniques using ORIG images and DA images. All techniques were
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used to investigate the recognition accuracies of aerial images of cows in natural scenes,
for which we created our own dataset with a UAV.

Additionally, this paper investigates the use of well-known colour constancy techniques
(MSR and MSRCR) for creating new image samples of both ORIG and the new rotation
matrix (ROT) images on three datasets: UAV aerial images, Croatia fish (Jaeger et al.,
2015) and Bird-600 (Lazebnik et al., 2005), with the aim to increase the amount of training
image samples. This approach enhances the colour information of the images which could
be very useful to get higher classification accuracies with the CNN. We train the CNN with
the cross-entropy loss function and compare the classification performances of the colour
constancy data augmentation (with ORIG/ROT), ORIG alone and ROT-DA alone on three
datasets. The study also considers two broad forms of data augmentation based on
their increase (colour constancy data augmentation) or no increase (ROT-DA alone) in
the amount of training images.

The results show that the fine-tuned CNN with an appropriate selection of the grid res-
olution and angular bounds for the rotation algorithm combined with colour constancy
methods yields the highest classification accuracies on most of the used datasets. More-
over, the results show that using fine-tuned CNN models with the proposed data augmen-
tation (ROT-DA) technique on the Aerial UAV images leads to significantly better results
than all other approaches. Finally, the results of our proposed approaches to data augmen-
tation combined with the fine-tuned CNN significantly surpass previous results on the
Bird-600 dataset (Lazebnik et al., 2005).

Paper outline: Section 2 describes the used datasets and the proposed DA techniques.
Section 3 discusses the methods used for classifying the Aerial UAV dataset and two other
animal datasets. Section 4 describes the CNN experimental setups and the results obtained
from the various classification methods on the used datasets. Finally, the conclusion is pre-
sented in Section 5.

2. Datasets and data augmentation

This section entails the description of three datasets and describes two kinds of data aug-
mentation which are evaluated in Section 4.

2.1. Datasets

2.1.1. Aerial UAV dataset

(1) Dataset collection: We employed the DJI Phantom 3 Advanced UAV for collecting
video frames of cows and natural backgrounds at different positions and orientations
(Okafor et al., 2017). An illustration of the UAV is shown in Figure 1.

We applied manual cut-outs with a fixed size of 100× 100 pixels to obtain positive
samples of images that contain a cow, while we employed an automatic extraction of
negative samples which have no presence of cows in the image. We flew the drone
three times over different fields containing cows in order to obtain different
samples. A summary of the three subsets of the obtained images with the amount
of positive and negative samples, the video streaming time and the amount of
unique objects is reported in Table 1. The unique objects denote cows that are
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recorded at different time frames and therefore have different appearances in time.
Figure 2 shows some samples of images of our Aerial UAV dataset.

(2) Cross-set splits: We used cross-set splits whereby each recorded subset is considered
as a separate fold. One subset is used for testing and the other subsets are used for the
training set. This process is repeated for the three available subsets. The classical
feature descriptors combined with supervised learning algorithms and the derived
CNN technique are employed for determining the existence of cows in the natural
images. We maintain the same dataset splits for all the experiments using the CNN
and the feature extraction techniques.

2.1.2. Croatian fish dataset
This dataset was originally presented in Jaeger et al. (2015). It contains a total of 794
images and has 12 classes with a non-uniform distribution of the images per class. The
authors reported an accuracy of 66.78% in their study using a CNN combined with a
linear SVM classifier. We adopted a different split in our experiment because of the imbal-
ance of the image samples within the various classes. We ensured that approximately half
of the image samples were kept aside as test sets. Figure 3 shows sample images of this
dataset for each of the classes.

2.1.3. Bird-600 dataset
This dataset was originally presented in Lazebnik et al. (2005). The dataset contains a total
of 600 images and has 6 classes with 100 individual image samples per class. We adopted a
similar dataset distribution by keeping 50% of the total image samples as test set as
reported in Lazebnik et al. (2005) in our experiments. The authors reported an accuracy
of 92.33% in their study by using a probabilistic part-based method for texture and
object recognition. Figure 4 shows sample images of this dataset for each of the classes.

Figure 1. A photo of the UAV used for this study.

Table 1. Statistics of video records and annotated data for the aerial UAV dataset.
Video ID Time (s) Unique objects Positive samples Negative samples

1 Subset 1 11 10 37 225
2 Subset 2 43 82 475 2094
3 Subset 3 22 10 50 1100
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2.2. DA techniques

2.2.1. Multi-orientation data augmentation
We propose a new offline DA algorithm called ROT-DA that transforms an input image to a
new single image containing multiple randomly rotated versions put in n× n cells. The use
of a larger value for n leads to a new image containing more different poses. For the Aerial
UAV dataset, the value of nwas set to 4 in the experiments, because using higher values of
n resulted in making the cow images look very small. On the other two animal datasets, we
set n = {2, 4} for Croatia fish while for the Bird-600, we set the value n = {1, 2}. An illus-
tration of the proposed DA method and the overall classification system using the CNN
is shown in Figure 5. The pseudo-code in Algorithm ?? explains the various transformations
of the ORIG image to obtain the multi-orientation image. After inserting the images in the
newly created image, background pixels are added to glue them together. This is done by
using the nearest neighbour pixels around the edges of the images. We will also perform
experiments with ROT-DA without rotations (ROT-DA-NR), but we do this only for the clas-
sical feature-based techniques.

Algorithm 1 Multi-Orientation Data Augmentation Algorithm
Input: Given images Ii(x, y) from an input directory, where x, y denote the pixel row and column, and a grid size of n × n.
Output: The data-augmentated versions of the images.
1:procedure CONSTRUCT A FILELIST WITH N IMAGES FROM AN INPUT DIRECTORY.
2: for each image Ii, i ∈ N do
3: Initialize the total number of cells n × n = M
4: for each image Ii, for all cells m ∈ M do
5: Define the size of the image resolution.
6: Compute a pad-size Iq = ceil((size(Ii))/2).
7: Compute a pad-array Ip using a pixel replication padding technique, given Ii, Iq, pad value set to ‘replicate’ and

the pad direction set to ‘both’.
8: Rotate Ip with a random angle within the bound [1°, 180°], this yields a new image Ir.
9: Adjust the image Ir to Ia such that undesired background introduced during rotation is filled with artificial

pixels from the nearest neighbour pixels.
10: Concatenate each Ia into M cells.

Figure 3. Sample images of the Croatia fish dataset showing each of the fish species (each column):
Chromis chromis, Coris julis (female), Coris julis (male), Diplodus annularis, Diplodus vulgaris, Oblada mel-
anura, Sarpa salpa, Serranus scriba, Spicara maena, Spondyliosoma cantharus, Symphodus melanocercus
and Symphodus tinca (Jaeger et al., 2015).

Figure 2. Sample images of the Aerial UAV dataset, showing the presence of cow (positive samples)
and non-cow (negative samples). Please note that non-cow images are also quite diverse.
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11: Ic = [Ia(k)… Ia(k + n − 1);… ;… Ia(M = n2)]n×n Given that k = 1, ∀ M cells, the ellipses (…) denote the column
cells entries containing rotated sub-images, and the semicolon (;) in this study represents the start of a new row. Note
that each cell in the n×n grid of cells contains a rotated copy of the input image Ia(k) in a reduced size.

12: end for
13: Convert the cell structure of Ic into a matrix Im.
14: Resize the image Im to 250×250 pixels.
15: Store each Im(i) into an output directory
16: end for
17:end procedure

Figure 4. Sample images of the Bird-600 dataset for each of the bird species (each column): egret, man-
darin, owl, puffin, toucan and wood duck (Lazebnik et al., 2005).

Figure 5. Block diagram illustrating the proposed method and overall system using the CNN. The
column (‘:’) symbol between different layers represents the connections of neural network layers
within the derived CNN architecture. The data-augmented image on the top left is a multi-orientation
image without padding and the image on the top right is the resulting multi-orientation image with
padding.
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2.2.2. Colour constancy data augmentation
Colour constancy is the perception of an object which ensures that perceived colours of
objects remain relatively constant under various variations in illumination conditions. This
area of study has found relevance in image processing and computer vision. Colour con-
stancy uses contrast/lightness enhancement and colour rendition for improving the quality
of an image. Most colour constancy algorithms use the retinex theory. The idea of the
retinex theory was proposed initially by Land and McCann (1971). The research in Provenzi,
Marini, De Carli, and Rizzi (2005) provided the basis for understanding the retinex algorithm
from a mathematical standpoint. Our study examines two kinds of MSR algorithms.

(1) Multi-scale retinex: This algorithm was proposed by Rahman et al. (1996) and Rahman
et al. (2004). The algorithm provides a trade-off between colour rendition and local
dynamic range (Petro et al., 2014). MSR computes the weighted sum of the outputs
from various SSR. According to Jobson et al. (1997), an MSR image can be computed
as

fmsrk (x, y) =
∑M
m=1

Wmfmk (x, y) (1)

fmk (x, y) = log(Ik(x, y)) − log
∑
(x, y)

Cm exp
−(x2 + y2)

2s2
m

[ ]
Ik(x, y)

( )
, (2)

where fmk is the SSR output forM scales,Wm denote the weights for each scale vari-
able, Wm = 1/3, the maximum number of scales is M = 3 because the number of the
RGB image channels is equal to the number of scales, Cm represents the normalization
factor and Ik(x, y) denotes the image pixel coordinates for a given colour band k. The
sm [ {15, 80, 250} are the standard deviations of the Gaussians for each of the scales.
We adopted the same parameters as used in Jobson et al. (1997) and Petro et al.
(2014), because they also perform well in our study. Furthermore, we further com-
puted the fmsrk (x, y) by using the mathematical expression proposed in Moore,
Allman, and Goodman (1991), where each colour channel is modified by the absolute
minimum and maximum of the RGB colour channels. This can be computed as

fmsrk (x, y) = 255
fmsrk (x, y) −mink(min(x, y) fmsrk (x, y))

maxk(max(x, y) fmsrk (x, y)) −mink(min(x, y) fmsrk (x, y))
. (3)

(2) Multi-scale retinex with colour restoration: Jobson et al. (1997) and Rahman et al.
(2004) initially proposed the MSRCR algorithm. An MSRCR image fmsrcrk can be com-
puted by the product of colour restoration functions Ck of the chromaticity and the
MSR outputs. The modified version of the MSRCR fmsrcrk (x, y) from the research in
Petro et al. (2014) can be computed as

fmsrcrk (x, y) = l Ck(x, y)fmsrk (x, y) + b
( ) (4)

Ck(x, y) = log a
Ik(x, y)∑K
k=1 Ik(x, y)

( )[ ]
, (5)
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where α controls the strength of the non-linearity and λ is a constant. For the MSRCR
experiment, α is set to 125 while λ is set to 0.8 and K represent the total number of spectral
bands (K = 3) while β is set to 46.

Proposed colour constancy data augmentation: This study examines the possibility of
using the ORIG or ROT images that are fed as input to the MSR or MSRCR algorithm.
This process can also be done vice versa by creating the colour constancy images and
then pass them as inputs to the rotation matrix algorithm. The new images are then com-
bined with either ORIG or ROT images to obtain either double or three times the effective
size of the initial train-validation image dataset. Please note by three times, we mean com-
bining ORIG+MSRCR-ORIG+MSR-ORIG or ROT+MSRCR-ROT+MSR-ROT. We carried out
experiments using two animal datasets and the UAV dataset. Some samples of both the
ORIG and ROT images with and without colour constancy are shown in Figures 6, 7 and
8 for the Aerial UAV dataset, Croatia fish dataset and Bird-600 dataset respectively.

We carried out some considerations to the rotational bounds for the ROT-DA alone or
colour constancy data augmentation with ROT images on the three datasets.

(a) For the Aerial UAV and Croatia fish datasets irrespective of the order of the grid
cells, we used a rotational angle in the range [1◦, 180◦].

(b) For the Bird-600 experiments, we considered two rotational conditions for
2× 2-ROT-DA which we defined in two versions:

(i) Version 1 (V1): The rotational angles for different image poses lie in the bound
[1◦, 180◦]. This computation was carried out on 2× 2-ROT-DA alone and colour
constancy data augmentation with 2× 2-ROT images separately.

(ii) Version 2 (V2): The rotational angles for different image poses lie in the bound
[−15◦, 15◦] and we exempted angle 0◦ in our computation; this is because we
do not want to have the existence of the ORIG image twice in the new DA var-
iants. This computation was carried out only on the colour constancy data aug-
mentation with 2× 2-ROT images.

Figure 6. Examples of the ORIG and ROT-DA images from the Aerial UAV dataset. The first row accounts
for the ORIG images (columns 1–4) and ROT-DA images (columns 5–8) without colour constancy. The
second and third rows are the MSR and MSRCR versions for both the ORIG and ROT-DA images respect-
ively. Our proposed rotation matrix algorithm eliminates zero pixel values generated due to rotation by
filling it with nearest neighbour pixels. The colour constancy algorithm shows enhancement in the illu-
mination and light intensities for each of the image samples.

JOURNAL OF INFORMATION AND TELECOMMUNICATION 9



(c) On the Bird-600 experiments, we also considered the colour constancy data aug-
mentation with 1× 1-ROT which used the same angular rotation bounds as in V2.
This setup can be seen as a combined DA method of rotation and colour
constancy.

3. Image recognition methods

3.1. Three inception module CNN architecture

This architecture is directly derived from the famous GoogleNet architecture as proposed
in Szegedy et al. (2015). We eliminated all the layers after the inception 4a module, except
for layers which lead to the first classifier and this is because the used datasets contain few
classes (2, 6 and 12) for the Aerial UAV, Bird-600 and Croatia fish datasets respectively.
Hence, we want to know how the reduced architecture can handle these problems. We
will compare the reduced CNN architecture to the original GoogleNet on the Aerial UAV
dataset. Another modification made with respect to the original GoogleNet architecture

Figure 7. Examples of the ORIG and ROT-DA images from the Croatian fish dataset (Jaeger et al., 2015).
The first row accounts for the ORIG images (columns 1–4) and ROT-DA images (columns 5–8) without
colour constancy. The second and third rows are the MSR and MSRCR versions for both the ORIG and
ROT-DA images respectively. The colour constancy algorithms also show improvement in the image
resolution compared to the ORIG image samples.

Figure 8. Examples of the ORIG and ROT-DA images. The first row accounts for the ORIG images
(columns 1–3), 2× 2 ROT-DA images using V1 rotation condition (columns 4–6), 2× 2 ROT-DA
images using V2 rotation condition (columns 7–8) and 1× 1 ROT-DA images using V2 rotation con-
dition (columns 9–10) all mentioned without colour constancy. The second and third rows are the
MSR and MSRCR versions for both the ORIG and ROT-DA images respectively.
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is the use of Nesterov’s Accelerated Gradient Descent (NAGD) rather than using the con-
ventional stochastic gradient descent (SGD) to update the weights in the deep neural
network. The NAGD optimization update rule (Sutskever, Martens, Dahl, & Hinton, 2013)
is described in Equations (6) and (7):

ui+1 = mui − aL∇L(Wi + mui), (6)

Wi+1 = Wi + ui+1, (7)

where L [ {Lh, Lc} is the loss function, μ is the momentum value, aL is the learning rate, ui
is the momentum variable, ∇ is the rate of change in L, i is the iteration number and Wi

denote the learnable weights. We employed randomly initialized weights for the scratch
CNN and pretrained weights from the ImageNet dataset for the fine-tuned CNN (Google-
Net architecture). In addition to our modification, we remark that the original GoogleNet
(in the Caffe framework) uses a simple online data augmentation that involves cropping
(with a default crop size of 224× 224 pixels), i.e. cutting out several patches from an
input image at five positions (as five in a dice), and additionally flipping (horizontal reflec-
tion) to obtain more samples. During training of the CNN model, it automatically flips each
cropped image to double the effective dataset size. The cropping means an act of extract-
ing some portions from an input image. In our customized CNNs, we considered the orig-
inal and two additional crop sizes: 125× 125 and 250× 250 pixels. The crop size of
250× 250 implies the single actual size of the input image. Furthermore, we evaluated
flip and non-flip conditions. All the input images to the CNN have image sizes of
250× 250 pixels. For the ROT-DA images, each cell of the 4× 4 grid contains a copy of
the input image in a reduced size and the method fills up empty spaces with nearest
neighbour pixels.

The derived three inception module CNN architecture is described in Table 2. This archi-
tecture involves the use of three inception modules that allow the concatenation of filters
of different dimensions and sizes into a single new filter (Shin et al., 2016; Szegedy et al.,
2015). In each inception module, there exist six convolution layers and one pooling layer.
Moreover, there exist several rectifiers (ReLUs) which are placed immediately after the con-
volutional and fully connected layers. Furthermore, there exist four pooling layers exclud-
ing those within the inception modules, two bottom convolutional layers and one top
convolutional layer which comes after the average pooling layer. The authors in Lapin,

Table 2. Three inception module CNN architecture.
Layer type Patch size/stride Output size Depth Number of convolutional filters Blob parameters

Conv 1 7× 7/2 112× 112× 64 1 16.06M
Max Pool 1 3× 3/2 56× 56× 64 0 4.01M
Conv 2 3× 3/2 56× 56× 192 2 0, 64, 192, 0, 0, 0 12.04M
Max Pool 2 3× 3/2 28× 28× 192 0 3.01M
Inception 3a 28× 28× 256 2 64, 96, 128, 16, 32, 32 4.01M
Inception 3b 28× 28× 480 2 128, 124, 192, 32, 96, 64 7.53M
Max Pool 3 3× 3/2 14× 14× 480 0 1.88M
Inception 4a 14× 14× 512 2 192, 96, 208, 16, 48, 64 2.01M
Average Pool 1 4× 4× 512 0 163.84K
Top Conv-1 1× 1/1 4× 4× 128 1 40.96K
FC 1 / 70% Drop L 1× 1× 1024 1 / 0 20.48K
FC 2 1× 1× 2 1 0.04K
CE / H Loss L 1× 1× 2 0
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Hein, and Schiele (2017) provide an analysis of loss functions for multi-class problems. We
use a top-1 loss function which employs either the hinge loss or the cross-entropy loss (for
the Softmax classifier). The L1-norm hinge loss Lh used in our study can be defined as

Lh(xi) = 1
N

∑N
i=1

∑K
k=1

(max(0,1− yki zk(xi))), (8)

where yki = {1,− 1}, yki = 1, if xi belongs to the target class of the kth class output unit, and
yki = −1 if xi does not belong to the target class. The variable N denotes the total number
of training images in a batch. K accounts for the number of class labels and zk = xTw is the
final activation of the output units. Here, x [ RD denote the D-dimensional features of the
previous hidden layer, and the learnable weights of the last layer arew [ RD×K .

The cross-entropy loss Lc used in our study is defined as

Lc(xi) = − 1
N

∑N
i=1

yi log
exp(zi(xi))∑K
k=1 exp(zk(xi))

( )( )
, (9)

where yi denotes the target values yi [ {0,1}. The fraction within the log accounts for the
softmax activation function (Okafor et al., 2016), which computes the probability distri-
bution of the classes in a multi-class classification problem. Note that in this study, we
investigate both binary and multi-classification problems.

The CNN under study consists of two fully connected (FC) layers: FC 1 with a corre-
sponding ReLU computes the hidden unit activations, which is immediately followed by
a regularization dropout of 0.7, and FC 2 contains the output neurons: 2, 12 and 6 for
Aerial UAV, Croatia fish and Bird-600 datasets respectively. The working operations of
the CNN are well explained in Szegedy et al. (2015).

3.2. Classical features combined with supervised learning algorithms

In this section, we describe the three feature extraction techniques which we use and
combine with the k-nearest neighbour classifier and the SVM with a linear kernel or a
radial basis function (RBF) kernel trained on the Aerial UAV dataset. In our preliminary
experiments, we compared the classical approaches to the CNN techniques on the
Aerial UAV dataset variants alone (without colour constancy). Note that for the classical
techniques, we considered two image resolution sizes: 100× 100 and 250× 250 pixels.
We remark that the classical methods performed worse compared to the CNN techniques.
Hence, we only considered the CNN approach on the other two datasets. The classical
methods are described as follows.

3.2.1. Colour histogram
The colour histogram (Colour Hist) is a feature extraction technique that analyses the
pixel colour values within an image. For this, the pixel colour values of an image
which exist as RGB (Red, Green and Blue) are first transformed to HSV (Hue, Saturation
and Value). After that, the value of each pixel in a channel is put in a histogram consist-
ing of different bins. In the experiments, only the saturation channel with a bin size of 32
is used, because it obtained the best performance in preliminary experiments. The
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resulting feature vector containing 32 values is given to the supervised learning
algorithms.

3.2.2. Histogram of oriented gradients
The histogram of oriented gradients (HOG) (Dalal & Triggs, 2005) features descriptor ana-
lyses patches (local regions) from an image. Then histograms are constructed based on the
occurrences of orientation gradients within the patches. The HOG descriptor can process
greyscale or colour image information. For the UAV dataset, we only considered the grey
option. The procedure for constructing the HOG is as follows: convert the colour images of
the aerial imagery into greyscale, then compute the gradients with two gradient kernels to
compute the gradient values for each pixel from the greyscale image. The gradients for
each pixel within a small block (cell) are put in bins (Junior, Delgado, Gonçalves, &
Nunes, 2009; Karaaba, Surinta, Schomaker, & Wiering, 2015; Surinta, Karaaba, Schomaker,
& Wiering, 2015; Takahashi, Takahashi, Cui, & Hashimoto, 2014), where each bin defines a
specific orientation range. The following parameters were used, because they worked best
in preliminary experiments: a grid of 2× 2 blocks is used, where each block is split into
2× 2 cells. The number of orientation bins is set to 4. This results in a feature dimension
size of 64. This feature vector is fed as input to the supervised learning algorithms.

3.2.3. The combination of HOG and Colour Hist
In this technique, the features from both the HOG and Colour Hist are combined to form
the HOG–Colour Hist feature descriptor. The features from both the HOG and Colour Hist
are first computed separately. The optimal parameters used for HOG in the combined
feature are different from the HOG descriptor alone, because they gave slightly better
results in the preliminary experiments. The HOG parameters used in this technique use
32× 32 pixels per cell, for which we used 9 cells in total from 100× 100 pixel images
with a single block. The number of orientation bins is set to 4 and the final feature dimen-
sionality is 36. We used the hue channel from the colour histogram with 32 bins. These
features are normalized and concatenated to obtain the final feature vector with 68
elements.

Several experiments were conducted to determine the best choice of parameters for
the used classifiers with the different classical feature descriptors. For the k parameter
in k-nearest neighbour (KNN), we tried k = {1, 2, 3, 4, 5, 10}. The C parameter of the
linear SVM is set to C = 2q−1, with the explored values q [ {1, 2, . . . , 19}. For the SVM
with the RBF kernel, we tried C = {1, 2, 3, 5} with g = 10 p−1, where p [ {1, 2, . . . , 4}.
The optimal parameters used for each of the classifiers are reported in Table 3. All the
algorithms used for the classical techniques were developed in Python.

4. Experimental setup and results

This section entails the description of the experimental setup and shows and discusses the
results on the used datasets.

4.1. CNN experimental setup

In this section, we explain the experimental setups used for each of the datasets.
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4.1.1. CNN experimental setup for the Aerial UAV dataset
The enumeration below briefly describes the CNN setups for the experiments without and
with colour constancy DA variants of this dataset.

(1) CNN setup on the non-colour constancy DA variants of the Aerial UAV dataset: All
experiments were run on the Caffe deep learning framework on a Ge-Force GTX
960 GPU model. The used experimental parameters are as follows: training display
interval is set to 40, average loss is set to 40, learning rate is set to 0.001, learning
policy is set to step, the step size is set to 4000 iterations, power is set to 0.5,
gamma is set to 0.1, the momentum value is set to 0.9, weight decay is set to
0.0002 and maximum iteration is set to 10,000, which generates a snapshot model
after every 500 iterations (which represent a snapshot). This resulted in 20 snapshots
for the entire training process. The mentioned parameters were not altered during all
the experiments for the different model configurations. The training images from the
combination of any of the two subsets as reported in Table 1 are further split into the
ratio 80% for training and 20% for validation. We employed a training batch size set to
20 and testing batch size set to 5 for all experiments, but with different test iterations.
The altered parameters for the three subsets of the Aerial UAV dataset used with their
corresponding splits are described in Table 4.

We first performed experiments with both the original and our derived CNN trained
from scratch on the ORIG images. The preliminary results show that our proposed
architecture requires less memory usage and a decrease in training computing
time. This is summarized in Table 5. Additionally, our architecture obtains a similar
level of performance compared to the original CNN.

(2) CNN setup on the colour constancy DA variants of the Aerial UAV dataset: In this
dataset, the effective sizes of the train-validation sets of the variants of colour con-
stancy DA images in either original or rotation matrix form are increased to double
or three times the original dataset size for the different subsets of this dataset. The
new versions of the datasets result in a slight modification of the CNN training par-
ameters: changes in the solver test iterations (validation/train) for the respective

Table 3. Best found parameters used for the various classifiers with the classical feature descriptors for
the Aerial UAV dataset.
Classical techniques RBF-SVM Linear SVM K-NN

HOG C=3, g = 1000 C=8 K=1
Colour Hist C=1, g = 100 C=8192 K=3
HOG–Colour Hist C=1, g = 100 C=256 K=3

Table 4. CNN parameters and dataset split information.
Parameters Subset 1 Subset 2 Subset 3

Test images 262 (� 7%) 2569 (� 65%) 1150 (� 29%)
Training images 2975 (� 74%) 1129 (� 28%) 2264 (� 57%)
Validation images 744 (� 19%) 283 (� 7%) 567 (� 14%)
Total images 3981 (100%) 3981 (100%) 3981 (100%)
Solver test iteration (val/train) 148 56 113
Test iterations for evaluation 52 514 230
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datasets are detailed in Table 6. The table also shows the dataset distribution. More-
over, we employed similar experimental settings as explained before. We remark
that the test iterations for the three test sets that exist in either ORIG or ROT-DA
alone were kept constant with the aim to examine the effectiveness of the new
CNN models. Please note that we separated the rotation matrix and original versions
of the test sets before applying colour constancy only on the train validation sets.

4.1.2. CNN experimental setup for Croatia fish dataset
In this dataset, we investigated the ORIG and ROT-DA datasets alone, and colour constancy
data augmentation of ORIG and ROT-DA separately. Moreover, we also studied the impact of
grid resolution on the ROT-DA; this means we used 4× 4 and 2× 2 ROT-DA images in our
experiments separately. Similar CNN experimental settings as described in Section 4.1.1
were used. The additional modifications to the proposed CNN include the batch size for
training, validation and testing is set to 12/8/1 respectively. The training of each of the
CNN models uses maximum iterations of 7200, which generates a snapshot at each interval
of 720 iterations, the step-size is set to 3600. This results in a decrease in the learning rate to
1/10th times the base learning rate of 0.001. For the ORIG and ROT-DA alone, we set the test
interval to 240 while for the colour constancy DA versions (ORIG/ROT-DA) it is set to 720. The
dataset variants were shuffled based on fivefold cross-validation with five different test sets
ensuring no overlap exists in the train validation sets. Please note that we separated the
rotation matrix and original versions of the test sets before applying colour constancy
only on the train validation sets. The dataset distributions are detailed in Table 6.

Table 5. Preliminary experiment using original and our proposed CNN on the three cross-set splits of
the Aerial UAV dataset.
Evaluation/methods Derived CNN, NAGD Original CNN, NAGD

Time (min) 25.1 ≤ t ≤ 26.8 63.2 ≤ t ≤ 69.1
Memory usage (MB) 752 1079
Average validation (%) 99.94 99.94
Average test (%) 97.87 97.71
Time improvement (%) 61.3 (decrease) –

Table 6. Dataset split information.
Dataset Dataset variants Sub Train Val Test STI

UAV ROT+MSR-ROT-DA Sub 1 5950 1488 262 297
ROT+MSRCR-ROT-DA Sub 2 2259 565 2569 113
ORIG+MSR-ORIG-DA Sub 3 4529 1133 1150 226
ORIG+MSRCR-ORIG-DA
ROT+MSRCR-ROT+MSR-ROT-DA Sub 1 8925 2232 262 446
ORIG+MSRCR-ORIG+MSR-ORIG-DA Sub 2 3388 848 2569 169

Sub 3 6793 1700 1150 340
Bird ORIG, ROT-DA 5 folds 270 30 300 30

ROT+MSRCR-ROT+MSR-ROT-DA 5 folds 810 90 300 90
ORIG+MSRCR-ORIG+MSR-ORIG-DA 5 folds 810 90 300 90

Fish ORIG, ROT-DA 5 folds 240 160 394 20
ROT+MSRCR-ROT+MSR-ROT-DA 5 folds 720 480 394 60
ORIG+MSRCR-ORIG+MSR-ORIG-DA 5 folds 720 480 394 60

For the Aerial UAV dataset, the first four DA methods construct a dataset two times larger than the original dataset for all
subfolds. STI means solver test iterations.
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4.1.3. CNN experimental setup for Bird-600 dataset
In this dataset, we investigated the ORIG and ROT-DA alone, and colour constancy data
augmentation of ORIG and ROT-DA separately. Our preliminary experiments suggest
that the 2× 2 ROT-DA yields better performances as compared to the larger 4× 4 grid.
This informed our choice of this grid, so we will use smaller grids for this dataset. A
similar CNN experimental setup as described in Section 4.1.1 is used. The additional
modification to the proposed CNN includes the batch size for training, validation and
testing is set to 9/1/1 respectively. The training of each of the CNN models uses
maximum iterations of 8100, which creates a snapshot at each interval of 810 iterations,
the step-size is set to 4000. We used a base learning rate of 0.001. For the ORIG and
ROT-DA alone, we set the test interval to 270 while for the colour constancy DA versions
(ORIG/ROT-DA) it is set to 810. Similarly, the various dataset variants were shuffled based
on fivefold cross-validation with five different test sets ensuring no overlap exists in the
train validation set. Please note that we separated the rotation matrix and original versions
of the test sets before applying colour constancy only on the train validation sets. The
dataset distributions are detailed in Table 6.

4.2. Evaluation of the CNN architecture on the datasets

In this section, we discuss the classification performances on the used datasets.

4.2.1. Results on the Aerial UAV dataset
To compute the average results of the different subsets of this dataset, we compute the
weighted average accuracy, which is computed by summing over the relative testing
dataset sizes multiplied with the average accuracies on the testing datasets. The weighted
mean can be computed using the expression: Tm = (∑S

s=1 WsTs)/(
∑S

s=1 Ws), where Tm
denotes the weighted mean test accuracies, Ws denote the weights, which represent
the number of individual images per test subset Ws = {262,2569,1150}, and Ts are the
test accuracies for the various subsets, with S=3.

(1) Evaluation of the CNN on Aerial UAV dataset variants (without colour constancy): In
our preliminary studies, we carried out experiments on the data augmentation
(ROT-DA) version of our dataset to determine the optimal crop size. We used
models generated from the train validation experiments for evaluating our test sets.
We initially employed the scratch CNN with the cross-entropy classification loss,
which is combined with or without flipping and with different crop sizes: 125× 125,
224× 224 and 250× 250. The results of these experiments are shown in Figure 9(a)
and suggest that the optimal method uses a crop size of 224× 224 pixels with
flipping. This yields an accuracy of 98.18% that occurred at the 5th snapshot. We
observed in general that there exist marginal differences between the various settings.

Based on this outcome, we used the best crop size with flip settings to carry out the
experiments using the scratch and fine-tuned versions of the CNN. For this, we used
both the ROT-DA and ORIG images. The validation results from Figure 9(b) show that
the scratch and the fine-tuned CNN applied on the two kinds of images converge to a
near maximum level of performance. The reason for this lies in the fact that most of the
validation images contain similar objects as in the training set. The validation results at
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the 5th snapshot are reported in Table 7. From the table, we can see that the use of the
original dataset leads to more overfitting. The results of the different CNNs with the
cross-entropy loss function are shown in Figure 9(c). From this figure, we can
observe that the best obtained test accuracy is obtained by the fine-tuned CNN
applied on the ROT-DA images in the 2nd snapshot. We further investigated the
CNN with the L1 hinge loss, using the earlier mentioned CNN settings (scratch and

Figure 9. Weighted mean classification accuracy on the Aerial UAV dataset while training for 10,000
iterations (20 snapshots). (a) Preliminary test performance using scratch CNN with cross-entropy loss
(softmax classifier) applied on ROT-DA alone using different crop sizes (CS), with and without flips.
(b) Validation set evaluation of the CNN with cross-entropy loss (CE-L) and hinge loss (H-L) using a
crop size of 224× 224 and flip. The ROT-DA means the augmented dataset and ORIG means the orig-
inally up-scaled images. The FT means fine-tuned and Scr means Scratch. (c) Test evaluation of the CNN
with CE loss using a crop size of 224× 224 and flip. (d) Test evaluation of the CNN with L1-Norm hinge
loss using a crop size of 224× 224 and flip.

Table 7. Weighted mean of the test and validation classification accuracies of the CNN applied on the
Aerial UAV dataset after the 5th snapshot.
Evaluation Method Cross-entropy loss Hinge loss

Test Fine-tuned CNN, ROT-DA 99.65 99.65
Fine-tuned CNN, ORIG 98.67 98.19
Scratch CNN, ROT-DA 98.18 96.16
Scratch CNN, ORIG 97.87 97.51

Validation Fine-tuned CNN, ROT-DA 99.94 99.94
Fine-tuned CNN, ORIG 100.00 100.00
Scratch CNN, ROT-DA 99.68 99.81
Scratch CNN, ORIG 99.94 99.94
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fine-tuned versions) applied on the two sets of images (ROT-DA and ORIG). The results
obtained are shown in Figure 9(d).

Based on the performances recorded during this preliminary investigation, we only
compared results obtained at the 5th snapshot as reported in Table 7. The results show
that the fine-tuned CNN trained on the data-augmented images yields higher test
classification accuracies when compared to the fine-tuned CNN trained on the ORIG
images of the dataset. We compared the different approaches using the binomial dis-
tribution of correctly classifying test images. The results show that the fine-tuned CNN
trained on the data-augmented images yields significantly higher classification accu-
racies (P , 0.01) when compared to the fine-tuned CNN trained on the ORIG images
of the dataset. Overall, the fine-tuned CNNs obtain the best results and combined with
the data-augmented images, the results are very good (99.65%). Finally, the results
show that overall the use of the cross-entropy loss function leads to better results
than the use of the hinge loss function.

(2) Evaluation of classical descriptors on the Aerial UAV dataset (without colour con-
stancy): The weighted mean test accuracies of the classical techniques on the Aerial
UAV dataset are reported in Table 8. We observe that the RBF-SVM outperforms the
other two classifiers (K-NN and linear SVM) when combined with each of the
feature descriptors. Another observation is that the classifiers with the Colour Hist
or HOG–Colour Hist features yield better performances than using the HOG descriptor
alone.

This shows the importance of using colour information for this classification
problem. Still, the results are significantly worse than the results using the CNN

Table 8. Summary of the weighted mean test performances for all CNNs and the classical methods on
the Aerial UAV dataset.
Methods Sub 1 Sub 2 Sub 3 Weighted mean

Fine-tuned CNN, ROT-DA, cross-entropy loss 100.00 99.73 99.39 99.65
Fine-tuned CNN, ROT-DA, hinge loss 99.62 99.77 99.39 99.65
Fine-tuned CNN, ORIG, cross-entropy loss 99.62 98.29 99.30 98.67
Fine-tuned CNN, ORIG, hinge loss 99.62 97.55 99.30 98.19
Scratch CNN, ROT-DA, cross-entropy loss 98.23 98.72 96.96 98.18
Scratch CNN, ROT-DA, hinge loss 98.08 96.19 95.65 96.16
Scratch CNN, ORIG, cross-entropy loss 98.85 99.34 94.35 97.87
Scratch CNN, ORIG, hinge loss 97.69 98.83 94.52 97.51
RBF-SVM-HOG, ORIG-100×100 96.56 86.99 95.30 90.02
RBF-SVM-Colour Hist, ORIG-100×100 96.56 96.07 96.87 96.33
RBF-SVM-HOG-Colour Hist, ORIG-100×100 96.56 96.11 96.69 96.31
Linear SVM-HOG, ORIG-100×100 85.88 81.51 95.65 85.88
Linear SVM-Colour Hist, ORIG-100×100 96.95 93.77 95.83 94.57
Linear SVM-HOG-Colour Hist, ORIG-100×100 95.80 94.08 93.74 94.09
KNN-HOG, ORIG-100×100 88.17 84.35 96.78 88.19
KNN-Colour Hist, ORIG-100×100 96.56 96.50 94.86 96.03
KNN-HOG-Colour Hist, ORIG-100×100 96.95 96.46 94.78 96.01
RBF-SVM-HOG, ORIG-250×250 85.88 81.51 95.65 85.88
RBF-SVM-Colour Hist, ORIG-250×250 96.57 95.37 96.52 95.78
RBF-SVM-HOG-Colour Hist, ORIG-250×250 85.88 81.51 95.65 85.88
RBF-SVM-HOG, ROT-DA-250×250 85.88 81.51 95.65 85.88
RBF-SVM-Colour Hist, ROT-DA-250×250 96.18 95.25 96.70 95.73
RBF-SVM-HOG-Colour Hist, ROT-DA-250×250 95.04 93.97 96.08 94.65
RBF-SVM-HOG-ROT-DA-NR-250×250 94.66 81.51 86.61 83.84
RBF-SVM-Colour Hist-ROT-DA-NR-250×250 96.56 95.13 96.43 95.60
RBF-SVM-HOG-Colour Hist-ROT-DA-NR-250×250 95.04 91.98 96.43 93.47
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methods. Table 8 also shows the results of using the RBF-SVM with different datasets
and different feature descriptors using larger images (250× 250 pixels). The results
show that here data augmentation does not lead to significantly better results. This
can be explained by the fact that the best feature descriptor, the colour histogram,
is not affected by this DA method. Finally, we note that the ORIG image with the
smaller 100× 100 resolution works better for the HOG feature descriptor and there-
fore also for HOG combined with the colour histogram. This can be explained by
the fact that we optimized the HOG parameters using the smaller images.

Although the performances of the CNN techniques are much better, the classical
techniques have a lower training computing time: t ≤ 1min. This is because of the
low dimensionality of the extracted features and the low number of trainable
parameters.

(3) Results of the CNN on the Aerial UAV dataset variants (with colour constancy): The
CNN training computing time on the colour constancy DA variants for the different
subsets is t ≤ 46min. We used the same approach of computing the weighted
mean of the accuracies for the three subsets as reported before. The subfigures in
Figure 10 show the learning curves for both training and testing on the colour con-
stancy DA variants of ORIG and ROT images respectively. From Figure 10(a,b), we

Figure 10.Weighted mean classification accuracy on the Aerial UAV dataset (different colour constancy
DA approaches) while training for 10K iterations (20 snapshots) using CNN with cross-entropy loss func-
tion. Please note that not all graphs are visible due to overlap. (a) Validation evaluation of the fine-
tuned CNN, (b) validation evaluation of the scratch CNN, (c) test evaluation of the fine-tuned CNN
and (d) test evaluation of the scratch CNN.
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observe that CNN validation accuracies of the colour constancy DA methods yield very
similar performances for both fine-tuned and scratch experiments.

From Figure 10(c), we observe that the use of fine-tuned CNN on the ROT-MSRCR-
ROT+MSR-ROT-DA attained a peak accuracy of � 99.5% at the 4th snapshot while
that of fine-tuned CNN on the ORIG+MSRCR-ORIG+MSR-ORIG obtained � 99.06%
at the 5th snapshot. In both approaches, the performances reduce for longer iter-
ations; this suggests that early stopping will be most appropriate for these
methods. The validation performance in Figure 10(a) shows that most of the tech-
niques examined were stable after the 7th snapshot (3.5K iterations). Hence we
choose this iteration point as the basis of our comparison. A summary of the vali-
dation and the test accuracies is reported in Table 9. Overall, the fine-tuned CNN
applied on ROT+MSR-ROT-DA yields a very good performance for almost all iterative
points of evaluation.

In this dataset, using fine-tuned CNN on colour constancy data augmentation
with ROT images yields a higher accuracy than with the fine-tuned CNN using
either colour constancy data augmentation with ORIG images or ORIG images
alone. However, all fine-tuned CNN results obtained using colour constancy DA
images do not surpass results obtained from fine-tuned CNN on ROT-DA images
alone. This is possibly due to fact that the test sets are only using ROT-DA images.
Overall the proposed rotation matrix algorithm leads to higher accuracies on this
dataset with or without the colour constancy algorithm.

In contrast to this observation, in the scratch experiments, the results obtained from
training scratch CNNs on colour constancy data augmentation with ORIG images outper-
form CNN results obtained on ROT-DA and ORIG images alone. Thus it seems that adding
more images to train the scratch CNNs plays the most important role. Based on this obser-
vation, we will use the best scratch technique (ORIG-MSRCR-ORIG+MSR-ORIG-DA) and its
rotation matrix version on the next two datasets. It is surprising that the scratch CNN per-
forms better than the fine-tuned CNN on the ORIG+MSRCR-ORIG+MSR-ORIG-DA dataset.

Table 9. Weighted mean of the validation and test classification accuracies of the CNN applied on
different versions of the Aerial UAV dataset.
Training CNN Dataset variants Validation Test

Fine-tuned CNN ROT-DA (Okafor et al., 2017) 99.94 99.65
ROT+MSR-ROT-DA 99.81 99.42
ORIG+MSR-ORIG-DA 99.97 99.40
ROT+MSRCR-ROT+MSR-ROT-DA 99.91 99.22
ROT+MSRCR-ROT-DA 99.97 99.12
ORIG+MSRCR-ORIG-DA 99.97 98.74
ORIG (Okafor et al., 2017) 100.00 98.67
ORIG+MSRCR+ORIG+MSR-ORIG-DA 100.00 98.14

Scratch CNN ORIG+MSRCR+ORIG+MSR-ORIG-DA 99.73 99.41
ORIG+MSR-ORIG-DA 99.43 99.32
ROT+MSRCR-ROT+MSR-ROT-DA 99.60 98.74
ORIG+MSRCR-ORIG-DA 99.84 98.27
ROT-DA (Okafor et al., 2017) 99.68 98.18
ORIG (Okafor et al., 2017) 100.00 97.87
ROT+MSRCR-ROT-DA 99.69 97.84
ROT+MSR-ROT-DA 99.77 97.56
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This may be caused by some overfitting problem, which we observed in the test accuracy
of subset 2.

4.2.2. Results on Croatia fish dataset
We trained the CNNs using fivefold cross-validation data splits. The training time of the
CNN models for each of the methods is t ≤ 16min. The models generated from the
CNNs using colour constancy DA variants with (ROT or ORIG) or (ROT or ORIG alone)
were used to compute the accuracy on the test sets that contain either ORIG or ROT-DA
images without colour constancy. The learning curves for train validation and testing
phases while training for 7200 iterations are shown in Figure 11.

The mean accuracies for test and validation sets for the different approaches after that
number of iterations are reported in Table 10. We report that there is no significant differ-
ence between the test and validation performances for most methods. This indicates that
the test and validation performances are consistent.

From Table 10, we observe that the fine-tuned CNN on ORIG alone, the colour con-
stancy data augmentation on ORIG and the 2× 2-ROT version of the dataset all yield
high accuracies. There is no significant difference in accuracies between these three
methods. The best method is the fine-tuned CNN on the2× 2-ROT+MSRCR-ROT+MSR-

Figure 11. Fivefold cross-validation mean classification accuracy on the Croatia fish dataset while train-
ing for 7200 iterations using CNNs with the cross-entropy loss function: (a) validation evaluation of the
fine-tuned CNN, (b) validation evaluation of the scratch CNN, (c) test evaluation of the fine-tuned CNN
and (d) test evaluation of the scratch CNN.
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ROT-DA variant of this dataset. When we compare the results of the fine-tuned CNN
applied on 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA to4× 4-ROT-DA, there exists a signifi-
cant difference (P<0.05). This indicates that the use of colour constancy data augmentation
with ROT images and the right choice of grid resolution are important for this dataset. We
also note that the fine-tuned CNN significantly outperforms the scratch CNN on this
dataset.

For the scratch experiments, training the CNN using ORIG+MSRCR-ORIG+MSR-ORIG-DA
yields the highest accuracy. This best scratch CNN approach significantly outperforms the
4× 4 ROT+MSRCR-ROT+MSR-ROT (P<0.05). Overall, the choice of colour constancy data
augmentation with 2× 2 ROT images works better in our experiment than the use of
colour constancy data augmentation with 4× 4 ROT images.

4.2.3. Results on bird dataset
We trained the CNNs using fivefold cross-validation data splits. The training time of the
CNN models for each of the methods is t ≤ 13min. The models generated from the
CNNs using colour constancy DA variants with (ROT or ORIG) or (ROT or ORIG alone)
of this dataset were used to compute the accuracies on the test sets that only
contain either ORIG or ROT-DA images (without colour constancy images). The learn-
ing curves for train validation and testing phases, while training for 8100 iterations are
shown in Figure 12. The mean accuracies for test and validation sets after that number
of iterations are reported in Table 11. From this table, we report that there is no sig-
nificant difference between the test and validation performances for each of the
examined methods, this shows again that the test and validation performances are
consistent to each other. From the subfigures in Figure 12, we observe that the
fine-tuned CNNs outperform the scratch CNN methods on the different dataset
variants.

The best techniques are the fine-tuned CNN on either 1× 1-ROT+MSRCR-ROT+MSR-
ROT-DA or ORIG+MSRCR+ORIG+MSR-ORIG-DA. These results indicate the importance of
colour constancy on the ROT or ORIG images. This success can be attributed to training
CNN weights with enhanced colour information and with more images. To obtain this
better performance, it was important to choose smaller rotational bounds [−15◦, 15◦]
as used in the 1× 1-ROT+MSRCR-ROT+MSR-ROT-DA rather than the original rotational
bounds [1◦, 180◦]. Such higher angular bounds may not be suitable for images that
have an upright representation of objects.

Table 10. Fivefold cross-validation and test classification accuracies and standard deviations of the CNN
applied on different versions of the Croatia fish dataset.
Training CNN Dataset variants Validation Test

Fine-tuned CNN 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 81.67 ± 2.65 82.18 ± 3.44
ORIG 84.63 ± 2.78 82.08 ± 4.21
ORIG+MSRCR+ORIG+MSR-ORIG-DA 80.54 ± 2.81 81.12 ± 3.16
4× 4-ROT+MSRCR-ROT+MSR-ROT-DA 80.92 ± 2.82 79.34 ± 1.66
4× 4-ROT-DA 81.00 ± 1.66 77.72 ± 1.72

Scratch CNN ORIG+MSRCR+ORIG+MSR-ORIG-DA 76.46 ± 2.40 74.56 ± 4.10
ORIG 73.64 ± 1.99 73.19 ± 3.12
2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 69.71 ± 3.43 70.30 ± 4.20
4× 4-ROT-DA 71.73 ± 3.08 70.10 ± 3.74
4× 4-ROT+MSRCR-ROT+MSR-ROT-DA 64.29 ± 1.30 67.97 ± 4.88
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Furthermore, we compared the results obtained with the fine-tuned CNNs on the
different variants of this dataset to the baseline result from Lazebnik et al. (2005) which
obtained 92.33% using a probabilistic part-based method (maximum entropy framework).
Our best approach significantly outperformed the baseline with a margin of 6.14% using
the fine-tuned CNN on 1× 1-ROT+MSRCR-ROT+MSR-ROT-DA. However, we remark that
the obtained scratch CNN results on this dataset performed worse than the baseline
method.

Figure 12. Fivefold cross-validation mean classification accuracy on the Bird-600 dataset while training
for 8100 iterations using CNNs with the cross-entropy loss function: (a) validation evaluation of the fine-
tuned CNN, (b) validation evaluation of the scratch CNN, (c) test evaluation of the fine-tuned CNN and
(d) test evaluation of the scratch CNN.

Table 11. Fivefold cross-validation and test classification accuracies and standard deviations of the CNN
applied on different versions of the Bird-600 dataset.
Training CNN Dataset variants Validation Test

Fine-tuned CNN 1× 1-ROT+MSRCR-ROT+MSR-ROT-DA 97.56 ± 2.47 98.47 ± 0.34
ORIG+MSRCR+ORIG+MSR-ORIG-DA 97.11 ± 2.59 98.26 ± 0.25
ORIG 98.00 ± 2.67 97.67 ± 0.56
V2− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 97.11 ± 2.29 97.27 ± 0.93
V1− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 93.55 ± 2.76 96.33 ± 0.79
V1− 2× 2-ROT-DA 93.33 ± 2.98 95.00 ± 0.73

Scratch CNN ORIG+MSRCR+ORIG+MSR-ORIG-DA 84.67 ± 5.23 85.40 ± 1.73
1× 1-ROT+MSRCR-ROT+MSR-ROT-DA 81.56 ± 4.01 84.27 ± 1.58
ORIG 84.67 ± 5.81 80.73 ± 2.73
V2− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 82.00 ± 5.94 80.73 ± 1.51
V1− 2× 2-ROT+MSRCR-ROT+MSR-ROT-DA 77.11 ± 5.05 75.80 ± 1.15
V1− 2× 2-ROT-DA 71.33 ± 7.48 71.20 ± 3.03
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5. Conclusion

In deep learning, data augmentation can play an important role if a dataset does not
contain many training images. In this paper, we developed a novel DA method that trans-
forms an image into a new image containing multiple random transformations of the
image. We combined this method with the use of colour constancy algorithms that add
several transformed images to the training datasets. We created different combinations
of methods: using ORIG or ROT images combined with colour constancy transformed
images or not. These combinations were compared on three different animal datasets:
Aerial UAV containing cows or not, a dataset with bird images and a dataset with fish
images. Overall we considered two broad forms of data augmentation based on their
increase (colour constancy data augmentation with ORIG or ROT-DA) or no increase
(ROT-DA alone) in the amount of training images.

The results show that for the Aerial UAV dataset, the augmented ROT images are
very useful. The Aerial UAV dataset consists of pictures taken from the sky, and there-
fore it is important to cope with 2D rotations to obtain the highest accuracies. It should
be noted that this DA algorithm is useful for the CNNs, because although CNNs are
more or less translational invariant, they are not rotational invariant. For the fish and
birds dataset, the proposed rotation matrix DA method does not lead to better
results than using the ORIG images. For these datasets, the images show objects
which are often in an upright position, and therefore there is less need to battle
rotational variances.

The colour constancy data augmentation helps in overall to get better accuracies, but
the differences are not very large compared to using the ORIG images. Only on the bird
dataset, the colour constancy data augmentation plays a very important role when train-
ing the CNN from scratch. The variation in colours is quite large for this dataset, and
therefore adding additional images with different illumination levels is helpful. On this
dataset, colour constancy data augmentation also improves the results of the fine-
tuned CNN.

The results have also shown that the fine-tuned CNNs significantly outperform the
CNNs trained from scratch on the Croatia fish and Bird-600 datasets. Furthermore, the
fine-tuned CNNs obtain very high accuracies on the Aerial UAV and Bird-600 datasets.

Future works can explore the use of deep neural network architectures to artificially
transform colours in images. This could be done with a novel way of data augmentation
or by adding initial layers that immediately transform the colour pixels. It will also be inter-
esting to create a deep neural network that can create the best ROT images, possibly
trained using an adversarial learning framework.
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