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Abstract
This study analyses two different methods to detect obstructive sleep apnea
(OSA) during sleep time based only on the ECG signal. OSA is a common
sleep disorder caused by repetitive occlusions of the upper airways, which
produces a characteristic pattern on the ECG. ECG features, such as the heart
rate variability (HRV) and the QRS peak area, contain information suitable
for making a fast, non-invasive and simple screening of sleep apnea. Fifty
recordings freely available on Physionet have been included in this analysis,
subdivided in a training and in a testing set. We investigated the possibility of
using the recently proposed method of empirical mode decomposition (EMD)
for this application, comparing the results with the ones obtained through the
well-established wavelet analysis (WA). By these decomposition techniques,
several features have been extracted from the ECG signal and complemented
with a series of standard HRV time domain measures. The best performing
feature subset, selected through a sequential feature selection (SFS) method,
was used as the input of linear and quadratic discriminant classifiers. In this
way we were able to classify the signals on a minute-by-minute basis as apneic
or nonapneic with different best-subset sizes, obtaining an accuracy up to 89%
with WA and 85% with EMD. Furthermore, 100% correct discrimination of
apneic patients from normal subjects was achieved independently of the feature
extractor. Finally, the same procedure was repeated by pooling features from
standard HRV time domain, EMD and WA together in order to investigate if
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the two decomposition techniques could provide complementary features. The
obtained accuracy was 89%, similarly to the one achieved using only Wavelet
analysis as the feature extractor; however, some complementary features in
EMD and WA are evident.

Keywords: time-frequency analysis, obstructive sleep apnea, heart rate
variability, automatic classification, pattern recognition

1. Introduction

Sleep-related breathing disorders have a high prevalence in the adult population.
Epidemiological studies indicate a high prevalence of 4% in males and 2% in females in
the general population (Young et al 1993). Obstructive sleep apnea (OSA), the most common
of the different types of sleep-related breathing disorders with about 84% of the total cases
(Malhotra and White 2002), is characterized by repetitive cessations of respiratory flow during
sleep.

The cessation of respiratory air flow occurs as a consequence of a collapse of the
upper airway at the level of the oropharynx. Upper airways obstruction produces a negative
intrathoracic pressure during inspiration which does not result in an effective airflow. This
continues until the lack of oxygen and the increase of CO2 causes a central nervous system
activation, called arousal. This activation recovers respiration without reaching the level of
conscious wakefulness, thus not being perceived by the subject. This same mechanism could
repeat up to 600 times in a single night in patients with severe sleep apnea (Penzel et al 2000).
This respiratory phenomenon, connected to central and autonomic reflexes, creates a pattern
in the heart rate fluctuations that is repeated at each apnea episode, which is characterized by a
decrease in the heart rate during the apnea phase and a heart rate increase during the recovery
(generally accompanied by an arousal episode).

Patients suffering from sleep apnea report excessive daytime drowsiness even when the
sleep period seems long enough. Besides significant social and emotional problems caused
by poor mental performances (Martin et al 1996), patients can also suffer from a series of
physiological problems. Frequent findings are hypertension and cardiac arrhythmia, which in
turn are often precursors of heart failure (Himmelmann 1999). This is why a sleep apnea patient
has a significantly higher probability of developing cardiovascular diseases (Ancoli-Israel
et al 2003).

Clinical sleep studies are expensive, because they require overnight evaluation in sleep
laboratories with dedicated systems and specialized attending personnel. Due to the cost and
relative scarcity of sleep centres, sleep apnea is widely underdiagnosed (Young et al 1997).
Hence, techniques which could provide a simple screening of sleep apnea without the need
for a specialized sleep centre are surely be of benefit. To this purpose, an interesting signal to
be used is the electrocardiogram (ECG) since this is highly influenced during the apnea event
and can be easily measured in a non-invasive way and with high signal-to-noise ratio even in a
nonclinical environment. In the recent years, the international literature presented numerous
papers on this subject, and some of them described processing methods able to reach very
good performance in apnea detection (Penzel et al 2002). In particular, Mendez et al (2009)
demonstrated the importance of using time-variant or time-frequency approaches for correctly
managing the nonstationarities in the signals, typical of apnea episodes. In this paper, we
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propose the use of two different methodologies: the empirical mode decomposition (EMD)
that decomposes the signals in intrinsic mode functions and the wavelet analysis (WA) that
enable a time-frequency (or time scale ) view of the signal. Both the methods could put into
evidence-specific dynamics for a better description of the signal.

2. Methodological considerations

2.1. Empirical mode decomposition (EMD)

The essence of the EMD is to decompose the signal in different components called intrinsic
mode functions (IMFs) that satisfy the necessary conditions for a meaningful Hilbert transform
(HT) calculation. An IMF is calculated by subtracting from the original signal x(t) the mean
m of the upper and lower envelopes, obtained by a cubic spline interpolation through the local
maxima and minima of the signal x(t), respectively:

C = x(t) − m (1)

This process is further repeated on C until eventually an IMF is obtained according to the
following characteristics:

(i) the number of extrema and the number of zero crossings must be either equal or differ at
most by one;

(ii) at any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.

This IMF is then subtracted from x(t), leaving a residue R:

R = x(t) − C. (2)

The described procedure can be applied again to R to obtain a set of IMFs and thus to
decompose the signal until the remaining R is no more than a monotonic signal. For the
detailed description of the EMD procedure, see Huang et al (1998).

2.2. Hilbert transform

The HT performed afterward on the IMFs makes the data analytical and calculates its
instantaneous frequency in a unique way. For an arbitrary time series, X(t), we can always
have its HT, as

Y (t) = 1

π
p.v.

∫ ∞

−∞

X(t ′)
t − t ′

dt ′, (3)

where p.v. indicates the Cauchy principal value. With this definition, X(t) and Y (t) form a
complex conjugate pair, so we can have an analytic signal, Z(t), as

Z(t) = X(t) + iY (t) = a(t) eiθ(t), (4)

in which

a(t) = [X2(t) + Y 2(t)]
1/2

, θ(t) = arctan

(
Y (t)

X(t)

)
. (5)

In equation (4), the polar coordinate expression clarifies the local nature of this analytic
representation: it is the best local fit of trigonometric function with time-varying modulus and
phase to X(t).
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2.3. Wavelet analysis

To study the EMD behaviour on HRV with an established decomposition method, an analogous
procedure was implemented using WA to subdivide the signal in components. Basically,
wavelet analysis decomposes a signal by using different versions of a ‘mother’ wavelet which
is scaled and translated in time (Torrence and Campo 1998).

The general formula for the continous wavelet transform (CWT) is

CWTx(τ, a) = 1√
a

∫
x(t)g∗

(
t − τ

a

)
dt, (6)

where g(t) is the mother or basic wavelet, * denotes a complex conjugate, a is the scale factor
and τ is a time shift (Thakor et al 2000). Typically, g(t) is a bandpass function centred around
a central frequency f 0. Scale a produces the compression or expansion of g(t) in time, scaling
the corresponding central frequency and bandwidth 1/a. WA ensures that the wavelet function
at each scale is normalized to have unit energy such that the energy at the different scales can
be directly comparable. In the discrete implementation of the wavelet transform (DWT), the
scale factor a varies as power of 2. The discrete Daubechies4 wavelet basis has been chosen
as suggested in (Pichot et al 1999).

3. Material and methods

3.1. Database description

The analysed data come from the Physionet database (www.physionet.org). The ECG
recordings come from Polysomnographies recorded at the sleep laboratory of the Philipps
Universität in Marburg, Germany. They are continuous recordings and contain all the
events that occur during a night which includes apneas, arousals, movements and also some
wakefulness episodes. The inclusion criteria of the subjects are reported in the Physionet
website and Penzel et al (2000). The subjects were normal sleep apnea patients; they had
some degree of arterial hypertension but no other cardiac or other medical disorder. They had
no medication with effects on blood pressure or heart rate. The patients had some arrhythmias
as usual in patients with sleep apnea and in patients with hypertension. Heart failure patients
were excluded.

Apnea scoring was carried out on the basis of standard criteria by an expert sleep clinician
(Penzel et al 2000).

An apnea/hypoapnea event is defined as a transient reduction in, or complete cessation
of, breathing. The episode must fulfill the following criteria (AASM task force 1999).

(i) A clear decrease (>50%) from the baseline in the amplitude of a valid measure of
breathing during sleep. Baseline is defined as the mean amplitude of stable breathing and
oxygenation in the 2 min preceding onset of the event or the mean amplitude of the three
largest breaths in the 2 min preceding onset of the event.

(ii) Clear amplitude reduction of a validate measure of breathing during sleep that does not
reach the above criterion but is associated with either an oxygen saturation of >3% or an
arousal.

(iii) The event lasts 10 s or longer.

Apnea detection was performed through the visual scoring of the respiratory activity
that was obtained as oronasal airflow measured using nasal thermistors, together with chest
and abdominal respiratory effort measured using inductive plethysmography, each digitized at

http://www.physionet.org
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25 Hz. In addition also an oxygen saturation signal digitized at 1 Hz was analysed. The apneic–
nonapneic annotation was provided on a minute-by-minute basis: a minute was labelled as
apneic if it contained at least one apneic or hypo-apneic episode, and if not it was defined as
nonapneic (Penzel et al 2000). The subject age ranged in the data set between 27 and 63 years
(48 ± 10.8 years) and subject weight ranged between 53 and 135 kg (86.3 ± 22.2 kg).

Standard ECG recordings were acquired at a sampling frequency of 100 Hz, with a
16 bits resolution. In the website the recordings were subdivided in three groups: apneic
patients (class A, with more than 100 min in apnea), borderline patients (class B, with total
apnea duration more than 5 and less than 99 min) and control or normal patients (class C, with
less than 5 min in apnea). From the database, 25 recordings were used as a training set for the
classification algorithms. A second group with 25 recordings was used as a test set to measure
the performance of the algorithms. Recordings of the database with a large number of ectopic
beats (more than 10% of the beats in the recording) were not included in the present research.
From the selected 50 recordings (from a total of 70 recordings), the heart rate variability
(HRV) signal was automatically obtained through a derivative and threshold procedure. The
eventual misdetected beats were manually corrected (see section 3.3 for details). The training
set consists of 4950 apneic minutes and 7127 nonapneic minutes. The test set contains 4428
apneic and 7927 nonapneic minutes.

3.2. RR signal correction and ECG-derived respiratory signal (AR signal)

In the provided database for each ECG signal a series of automatically detected QRS complexes
is included. From the QRS times and ECG signals the R peaks were detected and the RR
series were obtained. After that, the RR series were plotted together with the ECG to allow
manual correction of the misdetected beats. After manual correction, some errors were still
present such as outliers and automatic correction was done based on the deviation with respect
to a smooth version of the original time series (Mendez et al 2009, de Chazal et al 2003).
The AR signal was calculated by subtracting the baseline from the original ECG, detecting
the minimum value within 100 ms before and after the maximum value of the R peak and
integrating the area under the R peak in the interval between these two points. The baseline
itself was calculated using a median filter of 200 ms width.

3.3. Analysis description

On the basis of previous knowledge regarding the physiological effects of OSA on the ECG
signal, we extracted the RR interval series and the AR signal (QRS complex area), according
to the QRS annotations available on the website. The RR intervals show a characteristic
oscillation (brady-tachycardia) during periods with apneic events, producing a frequency
component around 0.02 Hz. AR is a signal that is highly affected by respiration; thus it can
be used as a rough estimation of respiratory activity and shows the same 0.02 Hz oscillation
during the sleep periods with apneas. During periods without apneic events, an oscillation at
the respiration frequency is observed in both the signals around 0.25 Hz. Each beat-by-beat
signal was resampled at 1 Hz, and then the time series were decomposed into their respective
modes by EMD. Thereafter, the Hilbert transform (HT) was applied to each mode, from which
features were extracted and complemented with a series of standard heart rate variability
(HRV) measures in time domain and through nonlinear analysis. All these parameters have
been obtained with 1 min time resolution. From the obtained feature set, the best performing
feature subset was selected as the input of linear and quadratic discriminant classifiers. This
whole process has been repeated using WA and features were extracted from wavelets details.
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Figure 1. Empirical mode decomposition (EMD) and wavelet analysis (WA) of an apneic RR
signal segment and their respective time-frequency spaces, obtained after calculation of the Hilbert
transform on the components. Displayed are the instantaneous amplitudes of the respective
components (above) and the modulus of their Hilbert transform (below).

(This figure is in colour only in the electronic version)

An illustration of both decompositions applied to an apneic segment of a representative RR
signal is shown in figure 1. Finally the features extracted by means of EMD and WA were
pooled in one set and the best features that separate apnea and nonapnea sleep time were
selected.

3.4. Feature set

From the EMD the first five IMFs were retained as they contained the relevant information for
this application (last IMFs contained information related to the trend). Analogous selection
was made for the WA: also here only the first five components were used (see figure 1),
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as they cover all relevant frequencies in the HRV signal. The Hilbert transforms of these
components were then calculated. Instantaneous frequencies were not normalized, while
for the instantaneous modulus a whole variety of normalization factors were explored: for
each sample the instantaneous amplitude of every component was divided (1) by the mean
value of the instantaneous amplitudes of all other components and (2) by the sum of the
amplitudes of all the modes. Using only the first five components this gave rise to 15 different
ratios. Means and standard deviations of these ratios are calculated on a minute-by-minute
basis. All these results were then added to the feature collection. Furthermore, corresponding
RR and AR signal components were also multiplied with each other to provide a sort of
normalized correlation measure between the contributions of the considered band in the RR
and AR signal. Thereafter, the ratios between instantaneous modulus were logarithmically
transformed to obtain a normal distribution. Then all the features, that were not normalized
with respect to the corresponding total power, were normalized to zero mean and unit
variance.

These features were then complemented with five additional feature types. Five features
from the standard time domain measures such as RMSSD, SDSD, HRV triangular index and
TINN were calculated (Task Force 1996) as well as the sample entropy on a minute-by-minute
basis.

3.5. Feature subset and classifier selection

Feature selection is a fundamental step inside the classification process. The selection of a
small subset, with high discriminatory power, aids to reduce the complexity of the classification
procedure and avoids the course of dimensionality in estimating the a posteriori distribution
during classification. Different approaches have been proposed to select the best set of features
for a specific classification task, among them we can find statistical analysis of features, wrap
methods, principal component analysis and factor analysis (Duda et al 2001). Wrap methods
search for a feature subset that maximizes the accuracy of the learning algorithm. The accuracy
is evaluated by cross-validation on the training set following an induction rule based on adding
or removing a feature from the feature set. Different wrap methods are usually used in the
literature, the most common ones are forward, backward and bidirectional (Kohavi and John
1997, John et al 1994). In this study, sequential feature selection (SFS) was used to select the
best feature subset that separates sleep apnea from normal sleep periods. SFS starts with the
accuracy evaluation of the learning algorithm for each single feature in the feature set. In other
words, SFS measures the leave-one-out cross validation (LOOCV) for each single feature in
the feature set (one subject is used for testing the algorithm performance at each iteration).
Afterwards, SFS selects the individual feature that maximized accuracy. Then, SFS computes
LOOCV for two features, the one that maximized accuracy in the first iteration and each other
feature from the remaining feature subset. SFS selects the couple with the highest accuracy.
After that, SFS evaluates feature subsets with three, four and more features. Finally, SFS gives
a tuple consisting of the combination of features that was the winner out at each iteration.
Generally, the SFS procedure terminates when the accuracy estimated at a certain iteration is
less than or equal to that evaluated at the previous step or when the feature subset achieves a
predefined number of features. In this study, SFS was terminated when the best feature subset
reaches 20 features. This process was performed for both linear and quadratic discriminant
classifiers (LD and QD).

Both discriminants assume that the class densities have a constant covariance matrix and
the class prediction is based on the maximum likelihood rule. LD and QD give estimation of the
a posteriori probability for each class. The largest estimated a posteriori probability defines
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the class of the examined sample. To explain how discriminants work, let x = [x1, x2, . . . , xd ]
be a row vector with d feature values and assume that we want to assign x to one of the
k possible classes i, then the discriminant value fi for each class i for LD and QD can be
computed, respectively, as

fiLD
= μiC−1xT − 1

2μiC−1μT
i + log(πi) (7)

fiQD
= −(x − μi)

T C−1
i (x − μi) − ∣∣C−1

i

∣∣ + 2 log(πi) (8)

where T means transpose and μi is the row mean vector evaluated from n training vectors
belonging to the class i and πi represents the a priori probability that x belongs to a class i.
To evaluate μi let N be the total number of x in the training set and Ni be the number of x of
the class i, then μi is obtained as follows:

μi = 1

Ni

Ni∑
n=1

xni . (9)

For a QD classifier Ci represents the pooled covariance of each class and it is evaluated
as

Ci = 1

Ni − 1

Ni∑
n=1

(xni − μi)
T (xni − μi) (10)

while for LD the pooled covariance is obtained for all classes as

C = 1

N − k

k∑
i=1

Ni∑
n=1

(xni − μi)
T (xni − μi). (11)

Finally, a practical way to evaluate πi is

πi = Ni

N
. (12)

However, since we are assuming the same a priori probability for both apneic and
nonapneic classes, πi could be eliminated in the above equations.

Figure 2(a) shows the accuracy performance, for both learning algorithms LD and QD,
during SFS feature selection using features obtained by EMD and time domain parameters
calculated from the HRV signal from the training set. Performance of the learning algorithms,
LD and QD, during SFS with features extracted by WA and HRV time measures from
the training set is shown in figure 2(c). Finally, since EMD and WA decompose a time
series in a number of nonlinear and linear scales, features extracted from EMD and WA and
HRV time domain measures were pooled together in order to observe if different ways of
decomposition could be complementary, and a higher classification could be obtained due
to the complementarity or the higher classification performance could be obtained with a
reduced number of features. The results for both learning algorithms, LD and QD with SFS
and features obtained through EMD-WA along with HRV time measures from the training set,
are shown in figure 2(e).

In an attempt to boost the classification performance, each feature in the best 20-feature
subset (coming from SFS feature selection for WA, EMD and WA-EMD independently) was
smoothed by a moving average filter with different time windows (in minutes). LOOCV was
used to evaluate the learning algorithms performance which were fed with the best 20-feature
subset (obtained by SFS) plus its single features but smoothed with a 2 min window. Then,
LOOCV was used again to evaluate the learning algorithms performance which were fed
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Figure 2. Classification performance measures calculated by sequential feature selection (SFS)
on the training set. Subplots a, c and e (left column) show performance of both linear and
quadratic discriminant classifiers for EMD and WA and combined WA-EMD features as the best
set of features increase. Subplots b, d and f (right column) show cross-validation results for both
discriminant classifiers using best 20 feature subset, obtained by SFS from EMD, WA and WA-
EMD features, respectively, and complemented with their smoothed versions filtered at different
windows sizes by a moving average filter.

with the best feature subset plus its single features but smoothed with a 3 min window. This
procedure was done for smoothing windows of 4, 5, 6 until 30 min.

The results of the learning algorithms, for the best 20-feature subsets and complemented
with their respective smoothed versions at different time smooth windows for subsets coming
from (1) EMD and temporal HRV measures, (2) WA and temporal HRV measures (3) WA-
EMD and HRV time measures, are shown in figures 2(b), (d), and (f), respectively. Note in
figures 2(b), (d) and (f) how the accuracy performance is higher for small smooth size windows
and lower for large smooth size windows. This process tries to include information from large
scales and reduces possible outliers that can be found in the raw features.
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Table 1. Classification performance of linear and quadratic discriminant classifier on the test
set using empirical mode decomposition (EMD) and wavelet analysis (WA) as feature extractors.
Classification was done using the best set feature with 10 and 20 features complemented with their
respective smoothed versions obtained by a moving average filter with a size window of 7 min.

Method Performance of wavelets

No of features 10 features 20 features

Discriminant Linear Quadratic Linear Quadratic

Accuracy 0.8755 0.8907 0.8664 0.8630
Sensitivity 0.8591 0.9037 0.857 0.9054
Specificity 0.9050 0.8673 0.8834 0.8200

Method Performance of EMD

No of features 10 features 20 features
Discriminant Linear Quadratic Linear Quadratic

Accuracy 0.8071 0.8433 0.8581 0.8401
Sensitivity 0.7777 0.8855 0.8282 0.8714
Specificity 0.832 0.8119 0.88832 0.7555

Method Performance of WA+EMD

No of features 10 Features 20 Features
Discriminant Linear Quadratic Linear Quadratic
Accuracy 0.8711 0.8907 0.8566 0.8673
Sensitivity 0.8569 0.9037 0.8442 0.90589
Specificity 0.8967 0.8673 0.8797 0.7920

4. Results

The best set of features with their best smoothed versions were used to classify HRV periods
of 1 min in the test set into apnea and no apnea events. The trained classifiers were tested on
25 recordings coming from 13 apnea, 4 borderline and 8 control subjects never seen during
the training phase. Table 1 shows the performance of all the combinations of classifiers
and features extractors during the test process by using best feature sets composed with 10
and 20 features and complemented with their respective smoothed versions (obtained with a
smoothing window of 7 min) that maximized the learning algorithms performance.

One can observe from table 1 that the performance of the classifier based on WA-EMD
does not outperform to the classifier based only in WA. Figures 3 and 4 show minutes of apnea
for each subject: the circle represent apneic subjects, the cross borderline subjects and the
star normal subjects. In figure 3 the results were obtained automatically by LD-EMD with a
best feature set of 20 features plus their smoothed versions, while figure 4 presents the results
obtained by QD-WA with a best feature set of ten features plus their smoothed versions. Note
that complete separation between normal and pathologic subjects can be achieved using a
threshold of 50 apnea minutes per night (dashed line) for the LD-EMD classifier while for
QD-WA a threshold of 15 apnea minutes per night (dashed line) separates completely both
subject classes. Furthermore, one can observe that most of the borderline subjects are located
between 15 and 160 apnea minutes per night for both classifiers.
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Figure 3. Class separation based on minutes per night calculated by the LD-EMD classifier
processing 20 features for 25 recordings of the test set. Note that applying a threshold of 55 min
per night, apnea and normal classes are separated. To compare with real classification, ◦ represents
subjects with apnea, + is borderline and ∗ is for normal subjects.

Figure 5 shows how well the apnea-hypopnea index (AHI) is correlated with the minutes
in apnea defined by an expert, as well as the correlation of the AHI with the minutes in apnea
detected automatically when the EMD or WA was used as feature extractors. From the figure,
it is possible to note that the AHI correlates very well with the minutes defined by an expert,
this is around 0.95%. Regardless from the fact that the automatic classification does not
present so high correlation values, the values are very good (i.e. 0.84 with EMD and 0.88 with
WA). However, high correlation values, up to 0.97, were obtained among the minutes in apnea
defined by an expert and those computed automatically. It is worth noting from the results,
that WA seems to perform better.

Table 2 shows the ten most important features selected from EMD and WA pools
independently and those selected when EMD and WA features were pooled together during
the SFS. Note how the second and fifth levels of the RR interval decomposition are the most
important features in both classifiers. In addition, most of the features belong to the RR
interval series. For the EMD and WA pool, we can observe that most of the features comes
from WA.

5. Discussion

This study deals with automatic methods to screen obstructive sleep apnea in a non-invasive
and simple way and more precisely the study of EMD and WA behaviour when the HRV
signal is analysed. The presented methods produce a minute-by-minute classification with
an accuracy similar to the best performing classification algorithms published before (Penzel
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Table 2. List of used features for both empirical mode decomposition and wavelet analysis.

Features Empirical mode decomposition

1 RR: mean ratio modulus IMF2 to total
2 RR: mean ratio modulus IMF5 to total
3 RR, AR: mean modulus IMF2 X IMF2
4 RR: mean ratio modulus IMF2 by IMF3
5 RR: mean ratio modulus IMF1 by IMF3
6 RR: mean ratio modulus IMF1 by IMF2
7 RR: standard deviation frequency IMF2
8 RR: mean ratio modulus IMF2 to total
9 RR: mean ratio modulus IMF3 to total

10 AR: variance ratio modulus IMF3 to total

Wavelet analysis

1 RR: mean ratio modulus scale5 to total
2 RR: mean ratio modulus scale2 to total
3 RR, AR: mean modulus scale2 X scale2
4 RR: mean ratio modulus scale2 to total
5 RR: mean Triangular
6 RR, AR: ratio mean ratios modulus scale2 to total
7 RR: mean ratio modulus scale1 by scale3
8 RR, AR variance modulus scale5 X scale5
9 AR: mean ratio modulus scale5 to total

10 AR: mean ratio modulus scale3 to total

EMD and Wavelet Analysis

1 RR-WA: mean ratio modulus scale5 to total
2 RR-WA: mean ratio modulus scale2 to total
3 RR-WA, AR: mean modulus scale2 X scale2
4 RR-WA: mean ratio modulus scale2 to total
5 RR-WA: mean Triangular
6 RR, AR -WA: ratio mean ratios modulus scale2 to total
7 RR-WA: mean ratio modulus scale1 by scale3
8 RR, AR -WA :variance modulus scale5 X scale5
9 AR-WA: mean ratio modulus scale5 to total

10 RR-EMD: mean ratio modulus IMF5 to total

et al 2002), using a generally smaller set of features. Our main observations are that (a) HRV
and QRS area yield fundamental information on the physiologic process that can be used to
develop simple and fast sleep apnea screening methods, (b) WA and EMD present different
ways to decompose a signal (WA in diatomic scales and EMD in nonlinear way); however,
the dynamic of the cardio-respiratory system is contained in the decomposition levels that
represent the respiratory frequency and the apnea repetition (see figure 1) in both approaches.
This leads to the consideration that the most relevant information, for apnea detection, is the
respiratory arrhythmia in the heart frequency and the frequency of repetition of the apneas.
This finding confirms previous results obtained through different methodologies (Penzel et al
2002, Mendez et al 2009, de Chazal et al 2003).
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Figure 4. Class separation based on minutes per night calculated by the QD-WA classifier
processing 10 features for 25 recordings of the test set. Note that applying a threshold of 15 min
per night, apnea and normal classes are separated. To compare with real classification, ◦ represents
subjects with apnea, + is borderline and ∗ is for normal subjects.

The originality of this study lies mainly in the application of EMD and WA combined
with HT. In the closest related earlier work of Mietus (Mietus et al 2000) the Hilbert transform
is used after applying bandpass filtering to the HRV signal, and the use of the EMD however
had never been investigated extensively before. Also this combination of methods had never
been investigated in detail before.

It is worth noting that the most important feature for WA is the detail at scale 5 that
captures the apnea repetition while for EMD the most important feature is IMF 2 where the
respiratory frequency is found (see figure 1). This result suggests that EMD follows better
the fast dynamics while WA the slow ones (see table 2). This can be clearly appreciated from
figure 1. Another important feature is the relation between AR and RR at the second level
for WA and EMD decompositions that suggests a close relation between QRS area and RR
intervals variations due to respiration. The instantaneous frequencies from the HT were never
included in the feature subset selected by SFS; those features did not seem to provide useful
information for classification. One notable point, in the features selected by SFS, is that most
of the features belong to the RR measure. This selection could be a right choice, since R
peaks are quite robust to noise, while the QRS area could be largely affected by the electrode
position or probably by the heart electrical axis of the subject.

On the other hand, it seems that even if the features that come from the sample entropy
and standard time HRV measures contain fundamental information of the process, they do not
override those coming from the WA and EMD. Another important point is the feature selection
when features from EMD and WA are combined. The most important features belonged to
WA, however, EMD features also are found in the best feature subset which indicates the
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complementarity of information between the WA and EMD decompositions. Further to this
mark, it is worth mentioning that if one decomposes a time series linearly in scales (WA) or
nonlinearly in modes (EMD), the information remains in levels or scales that represent the
same frequency. This information provides better insight into the nonlinear and linear intrinsic
dynamics of the HRV.

One of the major problems of HT, when it is used for HRV analysis, is the large spread
in the instantaneous frequency on IMF1 due to the fast variations between consecutive beats.
Some studies have tried to solve this problem in order to better explain or better define this
situation. Rilling et al (2003) proposed to couple the EMD with the reassigned spectrogram
to extract in the clearest way the real information on the heart rate fluctuations. This method
tries to correct the intrinsic blurring in a spectrogram caused by the limited size of the
analysis window by reassigning the symmetrical energy distributions due to the blurring back
to their original positions, which is supposed to be the centre of gravity of the local energy
distributions (Auger and Flandrin 1994). The slightly higher sensitivity of this spectrogram
method improved the accuracy of this method a little bit compared to the method with EMD
and HT. However as the computation time needed for calculating the reassignment of the
spectrogram is much longer, one may still prefer the method with HT to guarantee a better
usability of the algorithm. In another attempt to overcome the high spread in the IMF1 when
HT deals with HRV signals, Huang (1998) used a mean Gaussian window. All methods are
good and could be used indifferently since both give a rough measure of the high frequency
dynamic of HRV. A thorough analysis of those methods together with the classical ones such
as time-variant and time-frequency approaches could be important in order to define the real
accuracy of the approaches when instantaneous frequency dynamics have to be analysed.

This study used a variety of features and the best combination was selected based on their
classification performance. The feature information which is eventually used corresponds to
the information used by experts during manual classification, which confirms the right choice
of features by the automatic feature selection mechanism.

Finally, the evaluation of sleep apnea based only on features extracted from ECG seems
to have a limit around 90% independently from the method for feature extraction and classifier
that can be noted from the current and previous studies (Penzel et al 2002). However, this
difference between automatic and human scoring remains smaller to the inter-rater variability
of visual computer screen-based scoring since scoring between experts presents an agreement
level around 85% (Penzel and Conradt 2000). The similar performance, in all the automatic
approaches, confirms the hypothesis that automatic screening is robust and reproducible, and
then this idea reinforces the possible use of automatic screening for supporting the medical
decision and evaluating the sleep apnea in different environments as home. However, more
efforts must be done in order to standardize or define the features which carry fundamental
information for the apnea classification.

It is important to stress that such a result is connected to the quality of the signal, and,
especially for long-term recordings during the night, some periods may occur in which the
signal is really bad, absent or the heart rhythm is destroyed by the ectopic beats. When the
ECG presents a low signal-to-noise ratio, any R peak detector could fail and then alternative
measures have to be taken in order to obtain reliable results. For instance, if some isolated
peaks are misdetected, the procedure described in section correction of RR intervals could be
used, as well as the procedure described in de Chazal et al (2003) and Mendez et al (2009)
when consecutive misdetected beats occur (from 3 to 10 misdetected beats). In addition,
when more than ten consecutive misdetected beats occur, the whole 1 min epoch could be
discarded and remains as unclassified. Thus if these situations are managed correctly, the
performance of the current screening procedure is not largely affected. However, for future
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clinical applications, it will be necessary to define the minimal amount of the total night
recording needed for a reliable diagnosis.

It is worth remembering, however, that the method for the detection of apnea episodes is
proposed as a tool for home monitoring or screening and is not intended as a new diagnostic
tool that could replace the current standard procedure for a complete and exhaustive diagnosis.
It is rather a support tool for screening of people who could be at risk for apneas especially
in departments of cardiology where long-term ECG recording is a standard tool. People
identified with some degree of apneic events through the present analysis will be object of
a further clinical examination and referred to a sleep centre with sleep experts and may be
investigated with cardiorespiratory polysomnography. As the extracted features come mainly
from the analysis of the HRV signal, any pathology, event or drug that have an effect on the
HRV may influence the accuracy in the detection of the apneic episodes. It is beyond the aims
of the present work to provide detailed guidelines for the clinical use of the methods. To do
this work, a prospective study on a cardiology recruited patient group is needed. The aim of
the present work is to demonstrate the feasibility of an apnea screening based on ECG analysis
as can be observed from the current results. In order to come to a clinical application, further
investigations are still required on a larger number of subjects covering different subgroups of
the general population (i.e. different age ranges, presence of particular pathologies, etc).

6. Conclusions

The obtained results, with comparable accuracy up to 89%, showed that apnea screening can
be done in a very simple way using only data obtainable from the ECG signal, and in multiple
alternative ways. Moreover apneic and normal subjects could be separated completely. These
results further confirm the possibility of developing fast home screenings for sleep apnea
patients. Though EMD is a promising method, EMD did not seem to outperform WA in
this application; the latter performed slightly better. The frequency information found at the
lowest level and pointing to the apnea repetition was one of the main features for both methods.
The importance of the first IMF1 in EMD, however, could indicate a significant difference
with WA. Nevertheless in this first study on the use of EMD for the automatic screening of
obstructive sleep apnea, the possible usefulness of the EMD in HRV analysis has been shown
and it could be interesting to investigate its use in more different applications. Finally, our
results suggest that the apnea minute-by-minute classification could be a useful index for
screening proposes, it is because the minute-by-minute classification presents a close relation
with the AHI.
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