57 research outputs found

    Investigação preliminar das espécies de culicídeos do Pantanal Sul brasileiro e sua potencial importância na transmissão de arbovírus

    Get PDF
    In view of the high circulation of migratory birds and the environmental and climatic conditions which favor the proliferation of arthropods, the Brazilian Pantanal is susceptible to circulation of arboviruses. However, the amount of data concerning arbovirus vectors in this area is scarce; therefore the aim of this study was to conduct a preliminary investigation of Culicidae species in the Nhecolândia Sub-region of South Pantanal, Brazil and their potential importance in the arbovirus transmission. A total of 3684 specimens of mosquitoes were captured, 1689 of which caught in the rainy season of 2007, were divided into 78 pools and submitted to viral isolation, Semi-Nested RT-PCR and Nested RT-PCR, with a view to identifying the most important arboviruses in Brazil. Simultaneously, 70 specimens of ticks found blood-feeding on horses were also submitted to the same virological assays. No virus was isolated and viral nucleic-acid detection by RT-PCR was also negative. Nevertheless, a total of 22 Culicidae species were identified, ten of which had previously been reported as vectors of important arboviruses. The diversity of species found blood-feeding on human and horse hosts together with the arboviruses circulation previously reported suggest that the Nhecolândia Sub-region of South Pantanal is an important area for arbovirus surveillance in Brazil.Regiões como o Pantanal brasileiro, que apresentam fatores como riqueza de fauna silvestre incluindo circulação de aves migratórias e condições ambientais e climáticas favoráveis à proliferação de artrópodes estão potencialmente sujeitas à circulação de arbovírus. Entretanto, poucos trabalhos foram realizados acerca da presença de arbovírus em potenciais vetores no Pantanal. Neste sentido o principal objetivo deste trabalho foi conduzir uma investigação preliminar para presença de arbovírus em amostragens de culicídeos capturados na Sub-região da Nhecolândia no Pantanal Sul. Um total de 3684 mosquitos foi capturado, dos quais 78 grupos compondo uma amostragem de 1789 espécimes foram submetidos às técnicas de isolamento viral e RT-PCR para os mais importantes arbovírus no Brasil. Simultaneamente, 70 espécimes de carrapatos capturados durante hematofagia em cavalos também foram submetidos à pesquisa viral. Não houve isolamento viral em nenhuma amostra analisada e os resultados de detecção de ácido nucléico viral foram também negativos. Entretanto, foram identificadas 22 espécies de culicídeos, dez das quais previamente reportadas como vetores de importantes arbovírus. A competência vetorial de espécies capturadas durante hematofagia em humanos e cavalos aliada ao relato prévio de circulação de arbovírus sugerem a Sub-região da Nhecolândia como uma importante área de vigilância para arbovírus no Centro-Oeste do Brasil

    Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal

    Get PDF
    Despite evidence of West Nile virus (WNV) activity in Colombia, Venezuela and Argentina, this virus has not been reported in most South American countries. In February 2009, we commenced an investigation for WNV in mosquitoes, horses and caimans from the Pantanal, Central-West Brazil. The sera of 168 horses and 30 caimans were initially tested using a flaviviruses-specific epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) for the detection of flavivirus-reactive antibodies. The seropositive samples were further tested using a plaque-reduction neutralisation test (PRNT90) for WNV and its most closely-related flaviviruses that circulate in Brazil to confirm the detection of specific virus-neutralising antibodies. Of the 93 (55.4%) blocking ELISA-seropositive horse serum samples, five (3%) were seropositive for WNV, nine (5.4%) were seropositive for St. Louis encephalitis virus, 18 (10.7%) were seropositive for Ilheus virus, three (1.8%) were seropositive for Cacipacore virus and none were seropositive for Rocio virus using PRNT90, with a criteria of > four-fold antibody titre difference. All caimans were negative for flaviviruses-specific antibodies using the blocking ELISA. No virus genome was detected from caiman blood or mosquito samples. The present study is the first report of confirmed serological evidence of WNV activity in Brazil

    Accuracy of saliva for SARS-CoV-2 detection in outpatients and their household contacts during the circulation of the Omicron variant of concern.

    Get PDF
    BACKGROUND: While nasopharyngeal (NP) swabs are considered the gold standard for severe acute respiratory coronavirus 2 (SARS-CoV-2) real-time reverse transcriptase-polymerase chain reaction (RT-PCR) detection, several studies have shown that saliva is an alternative specimen for COVID-19 diagnosis and screening. METHODS: To analyze the utility of saliva for the diagnosis of COVID-19 during the circulation of the Omicron variant, participants were enrolled in an ongoing cohort designed to assess the natural history of SARS-CoV-2 infection in adults and children. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and Cohen's kappa coefficient were calculated to assess diagnostic performance. RESULTS: Overall, 818 samples were collected from 365 outpatients from January 3 to February 2, 2022. The median age was 32.8 years (range: 3-94 years). RT-PCR for SARS-CoV-2 was confirmed in 97/121 symptomatic patients (80.2%) and 62/244 (25.4%) asymptomatic patients. Substantial agreement between saliva and combined nasopharyngeal/oropharyngeal samples was observed with a Cohen's kappa value of 0.74 [95% confidence interval (CI): 0.67-0.81]. Sensitivity was 77% (95% CI: 70.9-82.2), specificity 95% (95% CI: 91.9-97), PPV 89.8% (95% CI: 83.1-94.4), NPV 87.9% (95% CI: 83.6-91.5), and accuracy 88.5% (95% CI: 85.0-91.4). Sensitivity was higher among samples collected from symptomatic children aged three years and older and adolescents [84% (95% CI: 70.5-92)] with a Cohen's kappa value of 0.63 (95% CI: 0.35-0.91). CONCLUSIONS: Saliva is a reliable fluid for detecting SARS-CoV-2, especially in symptomatic children and adolescents during the circulation of the Omicron variant

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota)

    Get PDF
    55 Pág.In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through the Laulima Government Solutions, LLC, prime contract with the U.S. National Institute of Allergy and Infec tious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC, under Contract No. HHSN272201800013C. U.J.B. was supported by the Division of Intramural Resarch, NIAID. This work was also funded in part by Contract No. HSHQDC15-C-00064 awarded by DHS S and T for the management and operation of The National Biodefense Analysis and Countermeasures Centre, a federally funded research and development centre operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowl edges support from the Mississippi Agricultural and Forestry Experiment Station (MAFES), USDA-ARS project 58-6066-9-033 and the National Institute of Food and Agriculture, U.S. Department of Agriculture, Hatch Project, under Accession Number 1021494. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of the Army, the U.S. Department of Defence, the U.S. Department of Health and Human Services, including the Centres for Disease Control and Prevention, the U.S. Department of Homeland Security (DHS) Science and Technology Directorate (S and T), or of the institutions and companies affiliated with the authors. In no event shall any of these entities have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The U.S. departments do not endorse any products or commercial services mentioned in this publication. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S.Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.Peer reviewe

    2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Investigação para a circulação do vírus do oeste do Nilo e outros flavivírus no Pantanal de Mato Grosso do Sul

    No full text
    Submitted by Claudete Fernandes ([email protected]) on 2017-06-22T13:31:14Z No. of bitstreams: 2 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) 68303.pdf: 12240487 bytes, checksum: f0e7048211aa669fc5d430aa684f1bf4 (MD5)Approved for entry into archive by Anderson Silva ([email protected]) on 2017-06-28T17:30:21Z (GMT) No. of bitstreams: 2 68303.pdf: 12240487 bytes, checksum: f0e7048211aa669fc5d430aa684f1bf4 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)Made available in DSpace on 2017-06-28T17:30:21Z (GMT). No. of bitstreams: 2 68303.pdf: 12240487 bytes, checksum: f0e7048211aa669fc5d430aa684f1bf4 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2012Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, BrasilApesar de evidências sorológicas da circulação do vírus do oeste do Nilo (WNV) na Argentina, Colômbia e Venezuela, este vírus ainda não foi detectado na maioria dos países da América do Sul. Em 2009 e 2010 foi realizada uma investigação para a circulação de WNV em artrópodes, equídeos, ovinos e crocodilianos do Pantanal de Mato Grosso do Sul, Brasil. Um total de 4514 artrópodes e 90 amostras de soro de crocodiliano foi submetido ao isolamento viral e RT-PCR para detecção de flavivírus. Paralelamente, amostras de soro de 892 equídeos, 238 ovinos, 90 crocodilianos foram inicialmente submetidas ao ensaio de imunoabsorção por ligação enzimática de bloqueio de epitopos específico para flavivírus (ELISA de bloqueio). As amostras soropositivas foram sequencialmente submetidas ao teste de neutralização por redução de placas (PRNT90) para WNV e outros onze flavivírus que circulam no Brasil para confirmar a detecção de anticorpos neutralizantes específicos. O vírus Ilhéus foi isolado de espécimes de Ochlerotatus scapularis e potenciais novos flavivírus foram detectados em grupos de Culex chidesteri e Mansonia pseudotitillans. Todas as amostras de crocodilianos foram negativas no isolamento viral e RT-PCR Todos os crocodilianos e ovinos foram negativos para a presença de anticorpos específicos para flavivírus por ELISA de bloqueio. Entre as 466 (52,2%) amostras de soro de equídeo soropositivas no ELISA de bloqueio, 94 (10,5%) foram soropositivas para o vírus Ilhéus, 57 (6,4%) para o vírus da encefalite de Saint Louis, 27 (3%) para o WNV, cinco (0,6%) para o vírus Cacipacoré e uma (0,1%) para o vírus Rocio usando PRNT90, com um critério de positividade a diferença de quatro vezes entre os títulos de anticorpos para todos os flavivírus testados. Não foram detectadas evidências sorológicas da circulação dos quatro vírus dengue, vírus da febre amarela, vírus Bussuquara ou vírus Iguape em equídeos na região. O presente estudo é o primeiro relato de evidência sorológica por PRNT90 da circulação de WNV no BrasilDespite evidence of West Nile virus (WNV) activity in Colombia, Venezuela and Argentina, this virus has not been reported in most South American countries. In 2009 and 2010, an investigation for WNV in arthropods, horses, sheep and caimans from the Pantanal, state of Mato Grosso do Sul, Brazil was conducted. A total of 4514 arthropods and 90 caiman serum samples were submitted to viral isolation and RT-PCR for flavivirus detection. Concurrently, the sera of 892 horses, 238 sheep and 90 caimans were initially tested using a flavivirus-specific epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) for the detection of flavivirus-reactive antibodies. The seropositive samples were further tested using a plaque-reduction neutralization test (PRNT90) for WNV and other 11 flaviviruses that circulate in Brazil to confirm the detection of specific virus-neutralizing antibodies. Ilheus virus was isolated from Ochlerotatus scapularis pool and potentially novel flaviviruses were detected in Culex chidesteri and Mansonia pseudotitillans pools. No flavivirus genome was detected or arbovirus isolated from caiman blood. All caimans and sheep were negative for flaviviruses-specific antibodies using the blocking ELISA Among 466 (52.2%) blocking ELISA-seropositive horse serum samples, 94 (10.5%) were seropositive for Ilheus virus, 57 (6.4%) were seropositive for St. Louis encephalitis virus, 27 (3%) were seropositive for WNV, five (0.6%) were seropositive for Cacipacore virus and one (0.1%) was seropositive for Rocio virus using PRNT90, with a criteria of \2265four-fold antibody titer difference. There was no serological evidence of Dengue viruses, Yellow fever virus, Bussuquara virus and Iguape virus infection in local horses. The present study is the first report of serological evidence using PRNT90 of WNV activity in Brazi

    Zika Virus Surveillance at the Human–Animal Interface in West-Central Brazil, 2017–2018

    No full text
    Zika virus (ZIKV) was first discovered in 1947 in Uganda but was not considered a public health threat until 2007 when it found to be the source of epidemic activity in Asia. Epidemic activity spread to Brazil in 2014 and continued to spread throughout the tropical and subtropical regions of the Americas. Despite ZIKV being zoonotic in origin, information about transmission, or even exposure of non-human vertebrates and mosquitoes to ZIKV in the Americas, is lacking. Accordingly, from February 2017 to March 2018, we sought evidence of sylvatic ZIKV transmission by sampling whole blood from approximately 2000 domestic and wild vertebrates of over 100 species in West-Central Brazil within the active human ZIKV transmission area. In addition, we collected over 24,300 mosquitoes of at least 17 genera and 62 species. We screened whole blood samples and mosquito pools for ZIKV RNA using pan-flavivirus primers in a real-time reverse-transcription polymerase chain reaction (RT-PCR) in a SYBR Green platform. Positives were confirmed using ZIKV-specific envelope gene real-time RT-PCR and nucleotide sequencing. Of the 2068 vertebrates tested, none were ZIKV positive. Of the 23,315 non-engorged mosquitoes consolidated into 1503 pools tested, 22 (1.5%) with full data available showed some degree of homology to insect-specific flaviviruses. To identify previous exposure to ZIKV, 1498 plasma samples representing 62 species of domestic and sylvatic vertebrates were tested for ZIKV-neutralizing antibodies by plaque reduction neutralization test (PRNT90). From these, 23 (1.5%) of seven species were seropositive for ZIKV and negative for dengue virus serotype 2, yellow fever virus, and West Nile virus, suggesting potential monotypic reaction for ZIKV. Results presented here suggest no active transmission of ZIKV in non-human vertebrate populations or in alternative vector candidates, but suggest that vertebrates around human populations have indeed been exposed to ZIKV in West-Central Brazil
    corecore