21 research outputs found

    On the Renormalization of a Bosonized Version of the Chiral Fermion-Meson Model at Finite Temperature

    Get PDF
    Feynman's functional formulation of statistical mechanics is used to study the renormalizability of the well known Linear Chiral Sigma Model in the presence of fermionic fields at finite temperature in an alternative way. It is shown that the renormalization conditions coincide with those of the zero temperature model.Comment: 12 pages, no figures, LaTex, reference [17] is updated, to appear in Phys. Lett.

    Gauge and Scheme Dependence of Mixing Matrix Renormalization

    Full text link
    We revisit the issue of mixing matrix renormalization in theories that include Dirac or Majorana fermions. We show how a gauge-variant on-shell renormalized mixing matrix can be related to a manifestly gauge-independent one within a generalized MSˉ{\bar {\rm MS}} scheme of renormalization. This scheme-dependent relation is a consequence of the fact that in any scheme of renormalization, the gauge-dependent part of the mixing-matrix counterterm is ultra-violet safe and has a pure dispersive form. Employing the unitarity properties of the theory, we can successfully utilize the afore-mentioned scheme-dependent relation to preserve basic global or local symmetries of the bare Lagrangian through the entire process of renormalization. As an immediate application of our study, we derive the gauge-independent renormalization-group equations of mixing matrices in a minimal extension of the Standard Model with isosinglet neutrinos.Comment: 31 pages, LaTeX, uses axodraw.st

    Recent developments in planetary Aeolian studies and their terrestrial analogs

    Full text link

    Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology

    No full text
    The visual cycle is a chain of biochemical reactions that regenerate visual pigment following exposure to light. Initial steps, the liberation of all-trans retinal and its reduction to all-trans retinol by retinol dehydrogenase (RDH), take place in photoreceptors. We performed comparative microspectrophotometric and microfluorometric measurements on a variety of rod and cone photoreceptors isolated from salamander retinae to correlate the rates of photoproduct decay and retinol production. Metapigment decay rate was spatially uniform within outer segments and 50-70 times faster in the cells that contained cone-type pigment (SWS2 and M/LWS) compared to cells with rod-type pigment (RH1). Retinol production rate was strongly position dependent, fastest at the base of outer segments. Retinol production rate was 10-40 times faster in cones with cone pigments (SWS2 and M/LWS) than in the basal OS of rods containing rod pigment (RH1). Production rate was approximately five times faster in rods containing cone pigment (SWS2) than the rate in basal OS of rods containing the rod pigment (RH1). We show that retinol production is defined either by metapigment decay rate or RDH reaction rate, depending on cell type or outer segment region, whereas retinol removal is defined by the surface-to-volume ratio of the outer segment and the availability of retinoid binding protein (IRBP). The more rapid rates of retinol production in cones compared to rods are consistent with the more rapid operation of the visual cycle in these cells. © The Rockefeller University Press
    corecore