447 research outputs found

    Juxtaposition

    Get PDF

    Tenfold Topology of Crystals: Unified classification of crystalline topological insulators and superconductors

    Full text link
    The celebrated tenfold-way of Altland-Zirnbauer symmetry classes discern any quantum system by its pattern of non-spatial symmetries. It lays at the core of the periodic table of topological insulators and superconductors which provided a complete classification of weakly-interacting electrons' non-crystalline topological phases for all symmetry classes. Over recent years, a plethora of topological phenomena with diverse surface states has been discovered in crystalline materials. In this paper, we obtain an exhaustive classification of topologically distinct groundstates as well as topological phases with anomalous surface states of crystalline topological insulators and superconductors for key space-groups, layer-groups, and rod-groups. This is done in a unified manner for the full tenfold-way of Altland-Zirnbauer non-spatial symmetry classes. We establish a comprehensive paradigm that harnesses the modern mathematical framework of equivariant spectra; it allows us to obtain results applicable to generic topological classification problems. In particular, this paradigm provides efficient computational tools that enable an inherently unified treatment of the full tenfold-way.Comment: 22+26 pages, 6 figures, 16 table

    Quantum chaos and the double-slit experiment

    Full text link
    We report on the numerical simulation of the double-slit experiment, where the initial wave-packet is bounded inside a billiard domain with perfectly reflecting walls. If the shape of the billiard is such that the classical ray dynamics is regular, we obtain interference fringes whose visibility can be controlled by changing the parameters of the initial state. However, if we modify the shape of the billiard thus rendering classical (ray) dynamics fully chaotic, the interference fringes disappear and the intensity on the screen becomes the (classical) sum of intensities for the two corresponding one-slit experiments. Thus we show a clear and fundamental example in which transition to chaotic motion in a deterministic classical system, in absence of any external noise, leads to a profound modification in the quantum behaviour.Comment: 5 pages, 4 figure

    Spin-polarized superconductivity: order parameter topology, current dissipation, and multiple-period Josephson effect

    Full text link
    We discuss transport properties of fully spin-polarized triplet superconductors, where only electrons of one spin component (along a certain axis) are paired. Due to the structure of the order parameter space, wherein phase and spin rotations are intertwined, a configuration where the superconducting phase winds by 4π4\pi in space is topologically equivalent to a configuration with no phase winding. This opens the possibility of supercurrent relaxation by a smooth deformation of the order parameter, where the order parameter remains non-zero at any point in space throughout the entire process. During the process, a spin texture is formed. We discuss the conditions for such processes to occur and their physical consequences. In particular, we show that when a voltage is applied, they lead to an unusual alternating-current Josephson effect whose period is an integer multiple of the usual Josephson period. These conclusions are substantiated in a simple time-dependent Ginzburg-Landau model for the dynamics of the order parameter. One of the potential applications of our analysis is for moir\'e systems, such as twisted bilayer and double bilayer graphene, where superconductivity is found in the vicinity of ferromagnetism.Comment: 12+7 pages, 6 figure

    A comment on the relation between diffraction and entropy

    Get PDF
    Diffraction methods are used to detect atomic order in solids. While uniquely ergodic systems with pure point diffraction have zero entropy, the relation between diffraction and entropy is not as straightforward in general. In particular, there exist families of homometric systems, which are systems sharing the same diffraction, with varying entropy. We summarise the present state of understanding by several characteristic examples.Comment: 7 page

    Maximum entropy estimation of transition probabilities of reversible Markov chains

    Full text link
    In this paper, we develop a general theory for the estimation of the transition probabilities of reversible Markov chains using the maximum entropy principle. A broad range of physical models can be studied within this approach. We use one-dimensional classical spin systems to illustrate the theoretical ideas. The examples studied in this paper are: the Ising model, the Potts model and the Blume-Emery-Griffiths model
    corecore