1,175 research outputs found

    From Random Matrices to Quasiperiodic Jacobi Matrices via Orthogonal Polynomials

    Get PDF
    We present an informal review of results on asymptotics of orthogonal polynomials, stressing their spectral aspects and similarity in two cases considered. They are polynomials orthonormal on a finite union of disjoint intervals with respect to the Szego weight and polynomials orthonormal on R with respect to varying weights and having the same union of intervals as the set of oscillations of asymptotics. In both cases we construct double infinite Jacobi matrices with generically quasiperiodic coefficients and show that each of them is an isospectral deformation of another. Related results on asymptotic eigenvalue distribution of a class of random matrices of large size are also shortly discussed

    On the Law of Addition of Random Matrices

    Full text link
    Normalized eigenvalue counting measure of the sum of two Hermitian (or real symmetric) matrices AnA_{n} and BnB_{n} rotated independently with respect to each other by the random unitary (or orthogonal) Haar distributed matrix UnU_{n} (i.e. An+Unβˆ—BnUnA_{n}+U_{n}^{\ast}B_{n}U_{n}) is studied in the limit of large matrix order nn. Convergence in probability to a limiting nonrandom measure is established. A functional equation for the Stieltjes transform of the limiting measure in terms of limiting eigenvalue measures of AnA_{n} and BnB_{n} is obtained and studied. Keywords: random matrices, eigenvalue distributionComment: 41 pages, submitted to Commun. Math. Phy

    Central limit theorem for linear eigenvalue statistics of random matrices with independent entries

    Full text link
    We consider nΓ—nn\times n real symmetric and Hermitian Wigner random matrices nβˆ’1/2Wn^{-1/2}W with independent (modulo symmetry condition) entries and the (null) sample covariance matrices nβˆ’1Xβˆ—Xn^{-1}X^*X with independent entries of mΓ—nm\times n matrix XX. Assuming first that the 4th cumulant (excess) ΞΊ4\kappa_4 of entries of WW and XX is zero and that their 4th moments satisfy a Lindeberg type condition, we prove that linear statistics of eigenvalues of the above matrices satisfy the central limit theorem (CLT) as nβ†’βˆžn\to\infty, mβ†’βˆžm\to\infty, m/nβ†’c∈[0,∞)m/n\to c\in[0,\infty) with the same variance as for Gaussian matrices if the test functions of statistics are smooth enough (essentially of the class C5\mathbf{C}^5). This is done by using a simple ``interpolation trick'' from the known results for the Gaussian matrices and the integration by parts, presented in the form of certain differentiation formulas. Then, by using a more elaborated version of the techniques, we prove the CLT in the case of nonzero excess of entries again for essentially C5\mathbb{C}^5 test function. Here the variance of statistics contains an additional term proportional to ΞΊ4\kappa_4. The proofs of all limit theorems follow essentially the same scheme.Comment: Published in at http://dx.doi.org/10.1214/09-AOP452 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore