8,025 research outputs found

    Sea-floor tectonics and submarine hydrothermal systems

    Get PDF
    The discovery of metal-depositing hot springs on the sea floor, and especially their link to chemosynthetic life, was among the most compelling and significant scientific advances of the twentieth century. More than 300 sites of hydrothermal activity and sea-floor mineralization are known on the ocean floor. About 100 of these are sites of high-temperature venting and polymetallic sulfide deposits. They occur at mid-ocean ridges (65%), in back-arc basins (22%), and on submarine volcanic arcs (12%). Although high-temperature, 350Β°C, black smoker vents are the most recognizable features of sea-floor hydrothermal activity, a wide range of different styles of mineralization has been found. Different volcanic substrates, including mid-ocean ridge basalt, ultramafic intrusive rocks, and more evolved volcanic suites in both oceanic and continental crust, as well as temperature-dependent solubility controls, account for the main geochemical associations found in the deposits. Although end-member hydrothermal fluids mainly originate in the deep volcanic basement, the presence of sediments and other substrates can have a large effect on the compositions of the vent fluids. In arc and backarc settings, vent fluid compositions are broadly similar to those at mid-ocean ridges, but the arc magmas also supply a number of components to the hydrothermal fluids. The majority of known black smoker vents occur on fast-spreading mid-ocean ridges, but the largest massive sulfide deposits are located at intermediate- and slow-spreading centers, at ridge-axis volcanoes, in deep backarc basins, and in sedimented rifts adjacent to continental margins. The range of deposit sizes in these settings is similar to that of ancient volcanic-associated massive sulfide (VMS) deposits. Detailed mapping, and in some cases drilling, indicates that a number of deposits contain 1 to 5 million tons (Mt) of massive sulfide (e.g., TAG hydrothermal field on the Mid-Atlantic Ridge, deposits of the Galapagos Rift, and at 13Β°N on the East Pacific Rise). Two sediment-hosted deposits, at Middle Valley on the Juan de Fuca Ridge and in the Atlantis II Deep of the Red Sea, are much larger (up to 15 and 90 Mt, respectively). In the western Pacific, high-temperature hydrothermal systems occur mainly at intraoceanic back-arc spreading centers (e.g., Lau basin, North Fiji basin, Mariana trough) and in arc-related rifts at continental margins (e.g., Okinawa trough). In contrast to the mid-ocean ridges, convergent margin settings are characterized by a range of different crustal thicknesses and compositions, variable heat flow regimes, and diverse magma types. These variations result in major differences in the compositions and isotopic systematics of the hydrothermal fluids and the mineralogy and bulk compositions of the associated mineral deposits. Intraoceanic back-arc basin spreading centers host black smoker vents that, for the most part, are very similar to those on the mid-ocean ridges. However, isotopic data from both the volcanic rocks and the sulfide deposits highlight the importance of subduction recycling in the origin of the magmas and hydrothermal fluids. Back-arc rifts in continental margin settings are typically sediment-filled basins, which derive their sediment load from the adjacent continental shelf. This has an insulating effect that enhances the high heat flow associated with rifting of the continental crust and also helps to preserve the contained sulfide deposits. Large hydrothermal systems have developed where initial rifting of continental crust or locally thickened arc crust has formed large calderalike sea-floor depressions, similar to those that contained major VMS-forming systems in the geologic record. Hydrothermal vents also occur in the summit calderas of submarine volcanoes at the volcanic fronts of arcs. However, this contrasts with the interpreted settings of most ancient VMS deposits, which are considered to have formed mainly during arc rifting. Hydrothermal vents associated with arc volcanoes show clear evidence of the direct input of magmatic volatiles, similar to magmatic-hydrothermal systems in subaerial volcanic arcs. Several compelling examples of submarine epithermal-style mineralization, including gold-base metal veins, have been found on submarine arc volcanoes,and this type of mineralization may be more common than is presently recognized. Mapping and sampling of the sea floor has dramatically improved geodynamic models of different submarine volcanic and tectonic settings and has helped to establish a framework for the characterization of many similar ancient terranes. Deposits forming at convergent margins are considered to be the closest analogs of ancient VMS. However, black smokers on the mid-ocean ridges continue to provide critically important information about metal transport and deposition in sea-floor hydrothermal systems of all types. Ongoing sea-floor exploration in other settings is providing clues to the diversity of mineral deposit types that occur in different environments and the conditions that are favorable for their formation

    The Mystery of the Ramsey Fringe that Didn't Chirp

    Get PDF
    We use precision microwave spectroscopy of magnetically trapped, ultra-cold 87Rb to characterize intra- and inter-state density correlations. The cold collision shifts for both normal and condensed clouds are measured. The results verify the presence of the sometimes controversial "factors of two", in normal-cloud mean-field energies, both within a particular state and between two distinct spin species. One might expect that as two spin species decohere, the inter-state factor of two would revert to unity, but the associated frequency chirp one naively expects from such a trend is not observed in our data.Comment: Proceedings of the 18th International Conference on Atomic Physics (ICAP 2002

    Decoherence-driven Cooling of a Degenerate Spinor Bose Gas

    Get PDF
    We investigate the relationship between the coherence of a partially Bose-condensed spinor gas and its temperature. We observe cooling of the normal component driven by decoherence as well the effect of temperature on decoherence rates.Comment: 4 pages, 2 figure

    Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces

    Get PDF
    We have measured magnetic trap lifetimes of ultra-cold Rb87 atoms at distances of 5-1000 microns from surfaces of conducting metals with varying resistivity. Good agreement is found with a theoretical model for losses arising from near-field magnetic thermal noise, confirming the complications associated with holding trapped atoms close to conducting surfaces. A dielectric surface (silicon) was found in contrast to be so benign that we are able to evaporatively cool atoms to a Bose-Einstein condensate by using the surface to selectively adsorb higher energy atoms.Comment: Improved theory curve eliminates discrepancy. JLTP in pres

    A theory for investment across defences triggered at different stages of a predator-prey encounter

    Get PDF
    We introduce a general theoretical description of a combination of defences acting sequentially at different stages in the predatory sequence in order to make predictions about how animal prey should best allocate investment across different defensive stages. We predict that defensive investment will often be concentrated at stages early in the interaction between a predator individual and the prey (especially if investment is concentrated in only one defence, then it will be in the first defence). Key to making this prediction is the assumption that there is a cost to a prey when it has a defence tested by an enemy, for example because this incurs costs of deployment or tested costs as a defence is exposed to the enemies; and the assumption that the investment functions are the same among defences. But if investment functions are different across defences (e.g. the investment efficiency in making resources into defences is higher in later defences than in earlier defences), then the contrary could happen. The framework we propose can be applied to other victim-exploiter systems, such as insect herbivores feeding on plant tissues. This leads us to propose a novel explanation for the observation that herbivory damage is often not well explained by variation in concentrations of toxic plant secondary metabolites. We compare our general theoretical structure with related examples in the literature, and conclude that coevolutionary approaches will be profitable in future work

    Normal-superfluid interaction dynamics in a spinor Bose gas

    Get PDF
    Coherent behavior of spinor Bose-Einstein condensates is studied in the presence of a significant uncondensed (normal) component. Normal-superfluid exchange scattering leads to a near-perfect local alignment between the spin fields of the two components. Through this spin locking, spin-domain formation in the condensate is vastly accelerated as the spin populations in the condensate are entrained by large-amplitude spin waves in the normal component. We present data evincing the normal-superfluid spin dynamics in this regime of complicated interdependent behavior.Comment: 5 pages, 4 fig

    Recent Experiments with Bose-Condensed Gases at JILA

    Full text link
    We consider a binary mixture of two overlapping Bose-Einstein condensates in two different hyperfine states of \Rb87 with nearly identical magnetic moments. Such a system has been simply realized through application of radiofrequency and microwave radiation which drives a two-photon transition between the two states. The nearly identical magnetic moments afford a high degree of spatial overlap, permitting a variety of new experiments. We discuss some of the conditions under which the magnetic moments are identical, with particular emphasis placed on the requirements for a time-averaged orbiting potential (TOP) magnetic trap.Comment: 9 pages, 5 figures; corrected post-publication editio

    Persistence in systems with conserved order parameter

    Full text link
    We consider the low-temperature coarsening dynamics of a one-dimensional Ising ferromagnet with conserved Kawasaki-like dynamics in the domain representation. Domains diffuse with size-dependent diffusion constant, D(l)∝lΞ³D(l) \propto l^\gamma with Ξ³=βˆ’1\gamma = -1. We generalize this model to arbitrary Ξ³\gamma, and derive an expression for the domain density, N(t)∼tβˆ’Ο•N(t) \sim t^{-\phi} with Ο•=1/(2βˆ’Ξ³)\phi=1/(2-\gamma), using a scaling argument. We also investigate numerically the persistence exponent ΞΈ\theta characterizing the power-law decay of the number, Np(t)N_p(t), of persistent (unflipped) spins at time tt, and find Np(t)∼tβˆ’ΞΈN_{p}(t)\sim t^{-\theta} where ΞΈ\theta depends on Ξ³\gamma. We show how the results for Ο•\phi and ΞΈ\theta are related to similar calculations in diffusion-limited cluster-cluster aggregation (DLCA) where clusters with size-dependent diffusion constant diffuse through an immobile `empty' phase and aggregate irreversibly on impact. Simulations show that, while Ο•\phi is the same in both models, ΞΈ\theta is different except for Ξ³=0\gamma=0. We also investigate models that interpolate between symmetric domain diffusion and DLCA.Comment: 9 pages, minor revision
    • …
    corecore