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Abstract

Species may be driven extinct by climate change, unless their populations are able to shift fast enough to track regions of
suitable climate. Shifting will be faster as the proportion of suitable habitat in the landscape increases. However, it is not
known how the spatial arrangement of habitat will affect the speed of range advance, especially when habitat is scarce, as is
the case for many specialist species. We develop methods for calculating the speed of advance that are appropriate for
highly fragmented, stochastic systems. We reveal that spatial aggregation of habitat tends to reduce the speed of advance
throughout a wide range of species parameters: different dispersal distances and dispersal kernel shapes, and high and low
extinction probabilities. In contrast, aggregation increases the steady-state proportion of habitat that is occupied (without
climate change). Nonetheless, we find that it is possible to achieve both rapid advance and relatively high patch occupancy
when the habitat has a ‘‘channeled’’ pattern, resembling corridors or chains of stepping stones. We adapt techniques from
electrical circuit theory to predict the rate of advance efficiently for complex, realistic landscape patterns, whereas the rate
cannot be predicted by any simple statistic of aggregation or fragmentation. Conservationists are already advocating
corridors and stepping stones as important conservation tools under climate change, but they are vaguely defined and have
so far lacked a convincing basis in fundamental population biology. Our work shows how to discriminate properties of a
landscape’s spatial pattern that affect the speed of colonization (including, but not limited to, patterns like corridors and
chains of stepping stones), and properties that affect a species’ probability of persistence once established. We can
therefore point the way to better land use planning approaches, which will provide functional habitat linkages and also
maintain local population viability.
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Introduction

There is a major concern that climate change and land use

change could interact to cause the extinction of many species

[1,2,3,4,5,6]. Although many species are responding to climate

change by shifts in their geographic range [7,8], successful shifting

depends on the availability of suitable habitat in regions of newly

suitable climate [2,4,5,9]. Conservationists urgently need to find

out whether and how they can facilitate range shifts. It is fairly

clear that the overall amount of habitat will be a major factor

determining the speed of advance into newly suitable landscapes

[2,6,10,11]. However, there is no adequate theory to understand

how habitat spatial arrangement affects the speed of advance, for a

given total amount of habitat. Most previous studies of habitat

spatial arrangement and fragmentation have been focused on

minimizing the extinction risk of existing populations. In the

absence of climate change, species generally have the best

population viability in landscapes where habitat is spatially

aggregated [12,13,14,15]. During a process of range shifting,

persistence is still important - subpopulations must still be able to

persist for certain amount of time, but they must also have the

capacity to found new populations before their climate window

shifts away [5,16]. Some theory using deterministic models

suggests that aggregating habitat into larger clusters speeds

advance [17,18,19], but the assumptions of these travelling wave

models will break down in highly fragmented landscapes. Larger

clusters usually means larger gaps between clusters, and this can

obviously prevent range shifting if the species has a fixed

maximum dispersal distance [20,21]. The more realistic case,

however, is when dispersal is probabilistic and rare, but not

impossible, at long distances [22]. Some simulation case studies

have observed faster advance with reduced levels of aggregation

[2,23], but have not explored the underlying reason for this. Here,

we use a metapopulation framework to develop the first

comprehensive analysis of how habitat arrangement affects the

speed of range advance through fragmented landscapes.

Materials and Methods

Markov system analysis
We first developed an exact solution for the speed of advance,

which can be computed for small numbers of patches. We use the

fact that a metapopulation with N patches behaves as a Markov

system with 2N states. We assume an ‘‘initial state’’ with one patch

occupied (henceforth referred to as the origin patch) and all others

unoccupied. We define the speed of advance as the probability

that a distant, ‘‘target patch’’ is ever colonized divided by the mean

time taken until it is colonized (if it is colonized). The successful
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colonization of the target may happen via any number of

intermediate states, as long as the ‘‘absorbing state’’ of extinction

is not reached first. The calculation is made simpler by the fact

that we can lump together all states where the target patch is

occupied, and treat them as an alternative absorbing state,

henceforth referred to as the ‘‘target state’’.

The probabilities of transition between states are determined by

combining the probabilities of individual patch transitions: each

patch can go extinct with probability m (we do not include a rescue

effect) and each occupied patch can colonize an empty patch so

that the colonization probability of an empty patch is

c~1{ exp ({l) where li~
P

j

R: exp ({adij
g), j indexes the

occupied patches and dij is the distance between patches i and j.

The parameter g changes the shape of the dispersal kernel, with

g,1 making it ‘‘fat-tailed’’, with a higher proportion of long

distance dispersal. The parameter a changes the mean dispersal

distance for a given g. The parameter R changes the rate of

production of propagules by an occupied patch.

The probability of ending up in the target state rather than

extinction, given that the system starts in the initial state, that is

with the origin patch occupied and all other patches unoccupied, is

given by

P~First element of I{Wð Þ{1
q

h i

where I is the identity matrix, W is a matrix of transition

probabilities between all non-absorbing states and q is a vector of

probabilities of reaching the target state directly from each non-

absorbing state. Conditional on not going extinct, the mean time

to reach the target state is given by

T~First element of { X{Ið Þ{1v
h i

where X is W normalized to exclude the probability of extinction,

and v is a vector of ones. We combine these two quantities to give

‘‘speed’’ as P/T.

We evaluated speed for systems of between 1 and 8 patches

between the source and the target, varying the colonization and

extinction parameters and the spatial locations of patches. For

more than one ‘‘stepping stone’’ patch, we did not investigate all

possible spatial arrangements, but added stepping stones iterative-

ly, each time choosing the location that gave the greatest increase

in speed. For comparison we then calculated speeds given a

number of idealized patterns, including a regularly-spaced chain of

patches.

Analysis with larger landscapes
We extended our analysis to consider a more realistic scenario

where a species is found in one large landscape (of hundreds of

patches), and has to extend its range into an adjacent, newly

climatically suitable landscape. We found the speed of advance by

simulating the metapopulation dynamics, because the exact

calculation of speed was not feasible for such large numbers of

patches (see ‘‘simulation’’ section below). We wanted to investigate

the interplay between the probability of the chains of colonization

events which are needed for the species’ range advance, and the

spatial clustering of habitat which is known to increase metapop-

ulation viability. To this end, we investigated three families of

spatial habitat pattern (see ‘‘landscape generation’’ section below),

while keeping the total amount of habitat constant. We also aimed

to test the performance of several summary metrics that might be

efficient approximations to the speed of advance, and that could

be used in conservation planning (see ‘‘landscape summary

metrics’’ section below).

Landscape generation
We generated a wide variety of habitat spatial patterns using

fractals as a basis, as well as two idealized patterns, a strictly

regular spacing of suitable cells, and a giant cross with continuous

east-west and north-south corridors (landscapes illustrated in

Fig. 1). The ‘‘patchy’’ family of landscapes (Fig. 1 top row) is a

commonly used model in fragmentation studies [24], consisting of

clusters of varying sizes, reminiscent of the pattern of many

fragmented natural habitats. The ‘‘channeled’’ landscapes (Fig. 1

middle row) are the negative image of the patchy landscapes (i.e.

they are the gaps left between clusters of non-habitat) and have the

interesting properties of approximately regular spacing along the

‘‘channels’’ but higher-than-random aggregation across the whole

landscape. Similar patterns may exist in nature for habitats

associated with rivers or with ecotones. The ‘‘patchy landscapes

with stepping stones’’ (Fig. 1 bottom row) represent the kind of

pattern that could be achieved with deliberate habitat re-creation.

Their overall aggregation is almost as high as the equivalent

patchy landscape, but their ‘‘shortest path’’ from one edge of the

landscape to the other is much shorter.

Continuous two-dimensional surface fractals on a 2566256 grid

were generated by the method of Chipperfield et al. [25]. For each

family of spatial pattern we used 10 randomly generated fractals

for each of 11 levels of fractal dimension. The continuous values

were ranked and then either the top ranking 1% or the median 1%

of cells (655 cells) were picked to produce habitat for patchy and

channeled landscapes, respectively. We decided to use a very low

proportion of habitat in the landscape because at this extreme the

effects of different spatial arrangements are most pronounced.

To produce patchy landscapes with stepping stones, the top

ranking 0.9% of cells were picked, and the resulting landscapes

analyzed to determine the quickest path between each cell and

each of the four edges of the landscape (the multiple shortest paths,

see ‘‘landscape summary metrics’’ section below) for a negative

exponential dispersal kernel with a mean distance of 10. We added

64 habitat cells as stepping stones along these paths so as to

minimize the maximum step distance, and bring the amount of

habitat up to 1%.

The giant cross landscape consisted of one completely full row

and one completely full column of cells (totaling 511 cells) and the

adjacent row and column evenly populated with the remaining

cells to make up 655. The regular landscape was generated by

overlaying a 10610 lattice over the landscape, at an angle (11u) to

avoid extra space at the edge because 256 does not divide by 10.

Simulation
We implemented a simple stochastic patch occupancy model.

The colonization probability of each patch i is c~1{ exp ({l)

where li~
P
j=i

R:
exp ({adij)

2p=a2{1
, j indexes the occupied patches and

dij is the distance between patches i and j. R can be interpreted as

the number of emigrants leaving each occupied patch per time

step (referred to as ‘fecundity’ for short), and 2/a as the mean

dispersal distance. The extinction probability of each patch is

m(12c), where the (12c) term constitutes a rescue effect. We

investigated mean dispersal distances between 1 and 10 cell units,

R values of 10, 45 and 100 and m values of 0.05, 0.2 and 0.4.

Each simulation started with a 200 time step ‘‘burn in’’ using

one landscape tile (such as one of the landscapes in figure 1),
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initialized with 50% occupancy. Each habitat cell was treated as

one patch (this assumption ensures that we are comparing like with

like when we compare different spatial arrangements of habitat).

Then, a duplicate, unoccupied landscape tile was appended either

to the north or to the east, so that this empty landscape could be

colonized from the existing one. The speed of advance was

obtained from a linear regression of the most northerly (or easterly)

occupied patch location vs. time (not including times after the

population had reached the most distant patch). For initial

exploration, every parameter combination was used to simulate

expansion for 200 time steps (see Fig. S4). To further distinguish

the landscapes with very slow expansion, we simulated expansion

for up to 40,000 time steps for dispersal distances of 2, 4, and 8,

with R = 100 and m = 0.2 (see Figs S2 & S3).

Landscape summary metrics
Because we observed in the Markov system analysis that the

relative speed of different spatial arrangements was not much

affected by the extinction probability (see results), we hypothesized

that a simpler metric based only on the expected time to

colonization between pairs of patches would be an efficient

predictor of speed. This makes it possible to analyze systems with

many more patches.

We represent the landscape as a weighted, undirected graph

[26], or network, where each habitat patch is a node and the cost

of each link is the expected time for a population to colonize one

patch from another, assuming the first patch starts off occupied.

Every node is connected to every other node. As in the

simulations, each unit habitat cell is treated as a patch of equal

quality. We do not lump contiguous cells into ‘‘patches’’ of

different sizes because this would imply a change in the

assumptions of the underlying model, making the speed of

advance between some cells infinitely fast.

We decided to use the edges of the landscape (north and south

or east and west) as nominal start and end points for our speed of

advance metrics. The edges are represented in our network as

special nodes which have a link to all the habitat cells but not to

each other. The cost of links to the edges is based on the shortest

straight-line distance between a cell and the edge. This is more-or-

less equivalent to assuming that colonists are equally likely to come

from anywhere along the edge. This assumption could be modified

to suit particular conservation applications, using sources and

targets relevant to species’ predicted range shifts.

Having defined the network and the start and end points, the

single shortest path is the chain of colonization events between

start and end points which has the lowest summed time. The

multiple shortest paths are the N shortest paths where each path is

constrained to go through one of the N habitat cells. The

maximum flow is calculated assuming the links in the network are

drainage pipes and the capacity of each pipe is the reciprocal of

Figure 1. Examples of the landscape patterns used for simulations of range advance. Nine example landscapes generated from fractals
are shown, along with the idealized ‘‘regular’’ and ‘‘cross’’ landscapes. All landscapes have the same overall amount of habitat: 1%. In total we used 10
randomly generated fractals for each of 11 levels of fractal dimension. The patchy landscapes consist of clusters of varying sizes, reminiscent of the
pattern of many fragmented natural habitats. The channeled landscapes are the negative image of the patchy landscapes (i.e. they are the gaps left
between clusters of non-habitat). Similar patterns may exist in nature for habitats associated with rivers or with ecotones. The patchy landscapes with
stepping stones represent the kind of pattern that could be achieved with deliberate habitat re-creation (0.9% pre-existing patches and 0.1%
stepping stones along the multiple shortest paths, see methods).
doi:10.1371/journal.pone.0047141.g001
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the colonization time. The conductivity is calculated assuming the

network is an electrical circuit and the resistance of each link is the

colonization time. Shortest paths and maximum flow were

calculated using standard algorithms in the R package igraph

[27,28]. Conductivity was calculated as

J~V|cend

where

V~M{1cstart

and M is a N6N matrix with elements

Mij~dij

X
l

Cjl{Cij ,

where C is the single step conductivity (
1

time
) between any two

points, i and j index the N cells, l indexes the N cells together with

the start and end points, and dij is [0 if i?j and 1 if i = j]. cend is a

vector of
1

time
between each cell and the end point; cstart is a

vector of
1

time
between each cell and the start point.

Versions of these metrics have been used before in modeling

animal movement in heterogeneous landscapes [26,29], but our

approach to specifying the model (translating from ecology to

mathematics) is different, in order to predict the population-level

process of range advance. Previous applications have sought to

model the literal trajectory of individual dispersers, given

perceived differences in ‘‘costliness’’ of crossing different types of

landcover. We are instead interested in modeling the advance of a

population, where only successful dispersal to, and establishment

in, a suitable habitat cell is regarded as advance, but the

population can simultaneously occur in many patches (unlike an

individual disperser). The expected time until colonization of one

cell from another is calculated using a distance-based kernel. A

straightforward extension to our approach would be to compute

time to colonization from an explicit individual-based movement

model instead.

Aggregation of the landscape was measured as the sum of

colonization probabilities between all pairs of habitat cells, also

known as metapopulation connectivity [30].

Results

Figure 2 gives exact results for a single stepping stone patch in-

between the source patch and the target patch, showing how the

speed of advance depends upon the stepping stone’s location, and

on the colonization and extinction parameters of the system.

Recall that speed is defined as the probability of colonizing the

target patch at all (not going extinct) divided by the mean time

until the target is colonized. Over most of parameter space, the

optimum location for the stepping stone is halfway between the

source and the target (Fig. 2a–b). The cases where the optimum

stepping stone location is closer to either the source or target occur

when the speed is relatively fast, even without a stepping stone,

and the maximum benefit provided by the stepping stone is low

(Fig. 2b). The extinction risk of individual patches has surprisingly

little effect on the optimal spatial arrangement (Fig. 2c), even

though high extinction rates reduce the speed overall.

When adding up to eight patches to this simple metapopulation,

a consistent result emerges that a regularly spaced chain is the best

arrangement whenever the probability of colonization over the

minimum spacing is low (Fig. S1). Again, we find that the

extinction probability hardly affects the relative speed of different

spatial arrangements (Fig. S1a stars vs squares).

The benefit of regular spacing can be appreciated through the

following heuristic argument. The mean time to colonize one

patch from another is proportional to exp(adg) in the absence of

any other patches (the lower the per-time-step probability of

colonization, the higher the mean time until colonization;

increasing a or g makes dispersal less likely at longer distances, d;

g,1 makes a ‘‘fat-tailed’’ kernel, see methods). If a stepping stone

is placed at a fraction f of the distance between the source and the

target, the time to colonize the target via the stepping stone can be

approximated as exp a df½ �gð Þz exp a d(1{f )½ �gð Þ. This function

always takes its smallest value at f = 0.5, except in cases (g and a
sufficiently small) when it is faster to colonize directly from the

source to the target than to use the stepping stone at all. The

benefit of having a centrally placed stepping stone as opposed to

colonizing the target directly from the source (2 exp a
d

2

� �g� �

compared to exp adgð Þ) increases exponentially as ad increases (ad

being the distance between source and target patch as a multiple of

the species’ typical dispersal distance). This explains the major

patterns observed in figures 1 and S1: for parameters (species)

where colonization is easy, stepping stones are not really needed

and their locations do not matter much. For parameters (species)

where colonization is difficult, stepping stones make an enormous

difference and it is especially important for them to be regularly

spaced. This is important for planning conservation for multiple

species, because it means that there is not an inherent conflict

between the needs of species with different dispersal abilities. If

planners reduce the maximum distance between adjacent patches

in a chain of stepping stones, they are helping the species that are

most dispersal limited, without hindering the others (those with

long distance dispersal for whom the spatial arrangement matters

less [31]).

In the simulations with hundreds of patches, landscapes with the

highest spatial aggregation had the lowest rate of advance - often

indistinguishable from zero (Fig. 3d). However, the converse was

not true - a landscape of regularly placed patches did not give the

fastest advance (Fig. 3c–d square symbol). In this two-dimensional

landscape, channeling the habitat into one or a few chains creates

faster routes for colonization, because it gives the benefit of regular

spacing in the approximate direction of travel, as in the analytical

model, and also avoids the low population persistence associated

with patch isolation. The giant cross landscape exemplifies this

property; it and a few other landscapes are characterized by high

conductivity but intermediate aggregation (Fig. 3a), and always

have the fastest speeds of advance (Fig. 3c–d). Landscapes with

very low aggregation experience reduced occupancy because of

patch isolation (Fig. 3b), as in any metapopulation model, but still

allow range advance as long as the species does not go extinct

(Fig. 3d).

The conductivity metric, derived from electric circuit theory,

predicted the speed of advance better than other candidate metrics

(see methods and Fig. S2). Conductivity can be tailored to different

dispersal distances (Fig. S3) and fecundities (Fig. S3, S4). However,

it does not explicitly incorporate extinction risk, and as a

consequence it over-estimates speeds for the regular and near-

random (lowest aggregation) landscapes (Fig. S3, S4). Without

needing specialist software (using the matrix inversion functions

built into R [27]), conductivity can be calculated quickly and easily

for systems of up to a few thousand patches.

The Speed of Range Shifts
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Discussion

We have presented a new approach to calculate the speed that a

species can shift into a fragmented landscape of habitat. We have

developed both an exact calculation which can be evaluated for

small numbers of patches, and an efficient approximation for large

numbers of patches. The most important result is that spatial

arrangements which maximize speed are quite different from the

arrangements that would maximize persistence in a static climate.

This has profound implications for conservation planning which

aims to promote both persistence and shifting potential. It could

also prompt a re-evaluation of some related questions in

population dynamic theory.

Advantages and limitations of our modeling approach
Our modeling approach includes the most fundamental

population processes that allow a species to shift into a new

landscape. There is a certain amount of habitat, in which

reproduction is possible. Dispersal allows the colonization of new

habitat; once a piece of habitat is colonized, it can produce new

colonists after a certain time. We also include a risk of population

extinction.

These fundamental processes are relevant, and can potentially

be parameterized, for any species. However, some additional

processes could be included within subsequent developments of

the approach. For example, we did not include changes in

population density within a patch, or density dependence of

emigration. The patch occupancy model is thus an approximation

where the time period between a patch being colonized and

reaching carrying capacity is collapsed into a constant parameter:

the model’s time step, and subsequent fluctuations around

carrying capacity can be ignored. The model also requires that

space be divided into discrete patches, which can reasonably be

assumed to be colonized and become extinct as units, and which

maintain the same colonization and extinction parameters over

time. Note that, although we have investigated spatial arrange-

ment using habitat units of equal size and quality for simplicity, the

modeling framework will work equally well with heterogeneous

patches.

It is common in landscape ecology and metapopulation studies

to treat any block of contiguous habitat as a single patch, however

large it is. This is potentially problematic when investigating range

expansion and invasion because it is not reasonable to assume that

a very extensive patch will get colonized all at once. It is also

common in such studies to assume that extinction risk decreases as

a power law with patch area. This is argued to be a reasonable

scaling for the chance of a catastrophic disturbance [32]. In our

alternative approach, where each grid cell of habitat is considered

independent, the effective extinction risk for a large block of

habitat cells will be lower than that given by a power law. We are

therefore using a rather optimistic assumption of the benefits of

habitat aggregation, and thus we can be fairly confident that our

result that aggregation generally reduces the speed of advance is

robust.

Although we have investigated various shapes of dispersal

kernel, we have not considered situations where colonization rates

depend on properties of the intervening landscape, as well as the

distance between patches. Our modeling framework is not tied to

the use of dispersal kernels: any method could be used to calculate

the probabilities of patch-to-patch colonization. One interesting

scenario, which could lead to slightly different optimal habitat

arrangements, is the existence of the ‘‘shadow effect’’ [33]. This

happens when, during dispersal, individuals are likely to stop when

they encounter any habitat, but more likely to continue dispersing

if they do not encounter habitat. This effect could reduce the

benefit of a stepping stone or corridor-like arrangement, especially

an arrangement that was strictly linear. The magnitude of the

effect would depend on the relative probabilities of stopping and

continuing, the effective area encountered by the disperser (due to

the tortuosity of its path and its perceptual range) and the distance

between stepping stones. We would predict that the shadow effect

would be less important in cases where the stepping stones are

widely spaced relative to the species’ typical dispersal distance, i.e.

in the cases where we have already shown that the stepping stones

are most advantageous to the speed of range advance.

Lastly, we have modeled the range expansion process as though

a whole landscape instantaneously becomes climatically suitable,

so that the species is free to move into it. In reality, the ‘‘window’’

of climatic suitability will constantly be shifting, and population

growth rates will be lower and more variable near the edge of the

window. It is straightforward to include more realistic climate

change into a simulation model [20,34,35,36,37], but much more

Figure 2. The value of a ‘‘stepping stone’’ of habitat as a function of its location. given a source patch at (0, 0) and target patch at (0, 2).
Speed is defined as the probability of colonizing the target at all (not going extinct) divided by the mean time until the target is colonized. (a) Speed
vs. location of the stepping stone shown in two dimensions (x, y) with one parameter set: colonization parameters a = 1, g = 1 and extinction
probability m = 0.2. (b) Speed vs. location of the stepping stone shown in one dimension, along the straight line between the source patch and the
target patch, and the effect of varying the colonization kernel a = [1,2,4] shown with [black,red,blue] and g = [0.5,1,2] shown with
[dotted,plain,dashed] lines where m = 0.2. (c) the effect of varying the extinction probability m = [0.05,0.2,0.4] shown with [dotted,plain,dashed]
lines, with a = [1,2,4] shown with [black,red,blue] and g = 1.
doi:10.1371/journal.pone.0047141.g002
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difficult to incorporate it into a single measure of speed, using

either the Markov system approach or the conductivity approach.

We still think that it is useful, though, to calculate speed of advance

for a landscape of habitat, assuming it is all suitable, because this

will give the maximum speed achievable. If this speed is much

slower than the projected speed of climate change, then there is an

obvious need for conservation action. If the speed is faster than the

projected speed of climate change, then the species will be limited

by its climate window and not by the spatial arrangement of

habitat patches.

Conclusions for population dynamic theory
Over recent decades, spatial ecological theory has played a

major role in shaping landscape management for conservation

[38]. However, the existing theory is not well suited to the current

challenge of managing populations facing concurrent climate

change and habitat loss. Population theory for conservation has

been focused on creating (meta)populations that are resistant to

extinction at a dynamic equilibrium, and generally recommends

spatial patterns of habitats that are aggregated. Meanwhile, studies

of invasive species have answered many theoretical questions

about the speed of advance into newly suitable habitats, but have

hardly explored the effects of habitat spatial arrangement,

probably because the habitat of invasive species tends to be

abundant [10]. Studies of disease epidemics could also give some

relevant theoretical insights [39], but it is difficult to transfer

insights because models often use spatially implicit host contact

networks (i.e. where distance in the network does not map onto

spatial separation). The susceptibility of the network to an

epidemic is often approached theoretically by calculating R0

[40,41], but this approach implicitly assumes that any host is

equally likely to be the original infected case. We have introduced

a new conceptual framework for studying the speed of advance for

a highly stochastic population, in terms of whether - and how

quickly -the population colonizes a specific target location given a

specific origin location. This is, to our knowledge, the first attempt

Figure 3. The trade-off between conductivity (good for speed of advance) and aggregation (good for steady-state occupancy). (a)
Rank correlation between landscape metrics of conductivity and aggregation. Red points are from patchy landscapes, blue from channeled
landscapes and orange from patchy landscapes with stepping stones. Aggregation increases with fractal dimension within each family of landscape
(cf fig. 1). Large black cross represents the cross landscape and square represents the regular landscape. (b) The occupancy of landscapes in
simulations before range advance started, at the end of the 200 time-step ‘‘burn-in’’, against aggregation with symbols as in (a). (c–d) The speed of
advance into the unoccupied landscape in cells per time step, against the conductivity (c) and aggregation (d) metrics, with symbols as in (a). Each
point represents one simulation run. Metapopulation parameters were a mean dispersal distance of 8 cells, fecundity of 100 (propagules produced by
an occupied cell) and per-cell extinction rate of 0.2.
doi:10.1371/journal.pone.0047141.g003
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to calculate ‘‘invasion’’ speed in landscapes where the assumptions

of a diffusion approximation will not hold. We believe that our

stochastic approach based on first passage times and probabilities

could be an improvement over existing methods to explore the

spread of an invasive species or a spatially transmitted disease

where the spread is likely to start from one spatial extreme. Indeed,

it could aid our understanding of how quickly populations will

reach a new equilibrium after any major environmental change. It

is a high priority for future modeling studies to use these methods

where appropriate, because we have already shown that they can

lead to different conclusions from deterministic models [18] in the

case of how spatial aggregation of habitat affects the speed of

advance.

Conclusions for conservation
Our results highlight that the ability of a species to persist in situ

and its ability to undertake wholesale range shifts are qualitatively

different properties. Large clusters of habitat are still important to

prevent the imminent extinction of many species, but this will not

be sufficient to ensure their long-term survival if the environment

becomes fundamentally unsuitable as a result of climate change.

Our key result is that spatial aggregation of habitat patches

hinders the speed of advance, even though it increases the

equilibrium patch occupancy. This result is very robust to the

species parameters chosen. Furthermore, we find that it is possible

to achieve both rapid advance and relatively high patch occupancy

when the habitat has a ‘‘channeled’’ pattern, resembling corridors

or chains of stepping stones. Importantly, the strongly channeled

patterns give the fastest speeds for all species parameters, although

the speeds for species with longer distance dispersal are less

sensitive to the spatial arrangement of habitat [31], so there is not

an inherent conflict between the needs of species with different

dispersal abilities. The aggregate effect of many routes or channels

cannot be summarized by any simple statistic of aggregation or

fragmentation, but it can be quantified by our version of

conductivity, measured between opposite edges of the landscape

(or between alternative source and target locations relevant to

climate change).

Although it is already recognized that an adjustment of

conservation strategies is needed to facilitate climate-driven range

shifts [5,42,43,44], progress has been hampered by a lack of a

common currency to define what is adequate or desirable.

Conductivity provides one such currency, which can be compared

to the speed of climate change, and is not reliant on human-

defined classifications of a ‘‘corridor’’ or ‘‘stepping stone’’. While

our results in general lend some theoretical credence to landscape

linkage projects that are already being designed, e.g. [45], the

designs still need to be tested to see whether the amount, pattern

and quality of habitat to be created will make sufficient difference

to the conservation of target species. Our conductivity metric

could be applied at a scale that was relevant to each target species,

and could be used alongside established metrics of population

viability to plan effective habitat networks for long-term conser-

vation.

Supporting Information

Figure S1 The speed obtained with different arrange-
ments of four stepping stones between an origin and a
target (a) for 9 different colonization kernels illustrated in (b). In

both panels g = [0.5,1,2] is shown with [dotted,plain,dashed] lines

and a = [1,2,4]64/4g shown with [black,red,blue] (the correction

4/4g is to make the kernels more comparable in average height

even though they have different shapes). In panel (a) two different

extinction rates are also shown (stars: 0.2; squares: 0.4). The

arrangement ‘‘found by iteration’’ is found by testing all locations

on a 3 by 81 lattice between the source and the target and

choosing the location that gives the highest speed for each new

stepping stone in turn. This iterative patch addition is not a

reliable way of finding the best arrangement for several patches,

because early choices severely limit the options for subsequent

arrangements.

(PDF)

Figure S2 Speed of expansion in simulations versus four
putative summary metrics of the landscape. In all panels

(a–d) the y axis is the rate of advance (cells/time step) of a

simulated metapopulation across one of 332 landscapes (see Fig. 2)

in one of 2 directions (east-west or south-north). Each point

represents one simulation run. Red points are from patchy

landscapes, blue from channeled landscapes and orange from

patchy landscapes with stepping stones. Large black cross

represents the cross landscape and square represents the regular

landscape. The four different metrics (x axes) are explained in

methods section ‘‘Landscape summary metrics’’. The numbers at

bottom-left indicate the number of points that have a speed

indistinguishable from zero and a metric value beyond the scale of

these plots (scales are chosen to show the more informative, non-

zero rates clearly). Metapopulation parameters were a mean

dispersal distance of 8 cells, fecundity of 100 and per-cell

extinction rate of 0.2. Correlation with speed of advance

r = 0.82 for conductivity, r = 0.65 for maximum flow, 0.54 for 1/

shortest path and 0.50 for 1/multiple shortest path (variables not

log-transformed for correlation calculation). Notice that all metrics

predict the large difference between the patchy and channeled

types of landscape, but the single and multiple shortest path

metrics seriously overestimate the benefit that could be gained by

adding a few stepping stones to the patchy landscapes.

(PDF)

Figure S3 Speed of expansion in simulations for species
with different dispersal distances. In all panels the y axis is

the rate of advance (cells/time step) of a simulated metapopulation

across one of 332 landscapes (see Fig. 2) in one of 2 directions

(east-west or south-north), and the x axis is the conductivity, whose

value depends on the landscape arrangement and the dispersal

kernel. Each point represents one simulation run. Red points are

from patchy landscapes, blue from channeled landscapes and

orange from patchy landscapes with stepping stones. Large black

cross represents the cross landscape and square represents the

regular landscape. Metapopulation parameters were fecundity

R = 100 and per-cell extinction rate m = 0.2. We observed that rate

of advance is approximately equal to conductivity 6!R, plotted as

a thick grey line. The black lines show the points where observed/

predicted speed would be insufficient for the species to advance

across the landscape in the maximum time allowed for the

simulation (which was 10,000 time steps for a dispersal distance of

8, 20,000 for 4 and 40,000 for 2), and numbers denote the count of

runs falling above or below these lines. Points with conductivity

less than 1024, all with speeds indistinguishable from zero, are not

shown on the graph but are included in the counts.

(PDF)

Figure S4 Speed of expansion in simulations for species
with different fecundity and extinction rates (R and m). In

all panels the y axis is the rate of advance (cells/time step) of a

simulated metapopulation across one of 332 landscapes (see Fig. 2)

in one of 2 directions (east-west or south-north), and the x axis is

the conductivity. Each point represents one simulation run.

Dispersal distance equals 8 for all panels. We observed that rate
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of advance is approximately equal to conductivity 6!R, plotted as

a thick grey line. The black lines show the points where observed/

predicted speed would be insufficient for the species to advance

across the landscape in the maximum time allowed for the

simulation (200 time steps). Red points are from runs where the

starting patch occupancy (at the end of the 200 time-step burn-in)

was less than 2/3, to show that these landscapes tended to have a

lower speed than predicted from their conductivity.

(PDF)

Data S1 Raw data for this study is made available here.
(ZIP)
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