11 research outputs found

    De novo fatty acid synthesis at the mitotic exit is required to complete cellular division

    Get PDF
    Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G2/M to G1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. The rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G2/M despite the presence of abundant fatty acids in the media. Our results suggest that de novo lipogenesis is essential for cell cycle completion. This "lipogenic checkpoint" at G2/M may be therapeutically exploited for hyperproliferative diseases such as cancer.Instituto de Investigaciones Bioquímicas de La Plat

    De novo fatty acid synthesis at the mitotic exit is required to complete cellular division

    Get PDF
    Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G2/M to G1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. The rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G2/M despite the presence of abundant fatty acids in the media. Our results suggest that de novo lipogenesis is essential for cell cycle completion. This "lipogenic checkpoint" at G2/M may be therapeutically exploited for hyperproliferative diseases such as cancer.Instituto de Investigaciones Bioquímicas de La Plat

    AKT1 and MYC Induce Distinctive Metabolic Fingerprints in Human Prostate Cancer

    Get PDF
    Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its own metabolic reprogramming. Akt and Myc are arguably the most prevalent driving oncogenes in prostate cancer. Mass spectrometry–based metabolite profiling was performed on immortalized human prostate epithelial cells transformed by AKT1 or MYC, transgenic mice driven by the same oncogenes under the control of a prostate-specific promoter, and human prostate specimens characterized for the expression and activation of these oncoproteins. Integrative analysis of these metabolomic datasets revealed that AKT1 activation was associated with accumulation of aerobic glycolysis metabolites, whereas MYC overexpression was associated with dysregulated lipid metabolism. Selected metabolites that differentially accumulated in the MYC-high versus AKT1-high tumors, or in normal versus tumor prostate tissue by untargeted metabolomics, were validated using absolute quantitation assays. Importantly, the AKT1/MYC status was independent of Gleason grade and pathologic staging. Our findings show how prostate tumors undergo a metabolic reprogramming that reflects their molecular phenotypes, with implications for the development of metabolic diagnostics and targeted therapeutics.Fil: Priolo, Carmen. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Pyne, Saumyadipta. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Rose, Joshua. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Regan, Erzsébet Ravasz. Harvard Medical School; Estados UnidosFil: Zadra, Giorgia. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Photopoulos, Cornelia. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Cacciatore, Stefano. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados UnidosFil: Schultz, Denise. Johns Hopkins University; Estados UnidosFil: Scaglia, Natalia. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: McDunn, Jonathan. Metabolon Inc.; Estados UnidosFil: de Marzo, Angelo M.. Johns Hopkins University; Estados UnidosFil: Loda, Massimo. Department of Pathology. Brigham and Women's Hospital; Estados Unidos. Department of Medical Oncology. Dana Farber Cancer Institute. Brigham and Women's Hospital; Estados Unidos. University of Cambridge; Estados Unidos. King's College London. Division of Cancer Studies; Estados Unido

    A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis

    Get PDF
    5′AMP-activated kinase (AMPK) constitutes a hub for cellular metabolic and growth control, thus representing an ideal therapeutic target for prostate cancers (PCas) characterized by increased lipogenesis and activation of mTORC1 pathway. However, whether AMPK activation itself is sufficient to block cancer cell growth remains to be determined. A small molecule screening was performed and identified MT 63–78, a specific and potent direct AMPK activator. Here, we show that direct activation of AMPK inhibits PCa cell growth in androgen sensitive and castration resistant PCa (CRPC) models, induces mitotic arrest, and apoptosis. In vivo, AMPK activation is sufficient to reduce PCa growth, whereas the allelic loss of its catalytic subunits fosters PCa development. Importantly, despite mTORC1 blockade, the suppression of de novo lipogenesis is the underpinning mechanism responsible for AMPK-mediated PCa growth inhibition, suggesting AMPK as a therapeutic target especially for lipogenesis-driven PCas. Finally, we demonstrate that MT 63–78 enhances the growth inhibitory effect of AR signaling inhibitors MDV3100 and abiraterone. This study thus provides a rationale for their combined use in CRPC treatment

    De novo fatty acid synthesis at the mitotic exit is required to complete cellular division

    Get PDF
    Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G2/M to G1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. the rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G2/M despite the presence of abundant fatty acids in the media. our results suggest that de novo lipogenesis is essential for cell cycle completion. this “lipogenic checkpoint” at G2/M may be therapeutically exploited for hyperproliferative diseases such as cancer.Fil: Scaglia, Natalia. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tyekucheva, Svitlana. Harvard University. Harvard School of Public Health; Estados UnidosFil: Zadra, Giorgia. Harvard Medical School; Estados UnidosFil: Photopoulos, Cornelia. Harvard Medical School; Estados UnidosFil: Loda, Massimo. Harvard Medical School; Estados Unido

    Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer

    No full text
    A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V71162631640sem informaçãosem informaçãoThis work was supported by Department of Defense (DoD) IMPACT Grant PC160357 (to M.L., S.M.D., and S.R.P.), DoD synergistic Grant W81XWH1410405 (to M.L. and U.M.), NIH Grants R01-CA131945 and P50 CA90381, and the Prostate Cancer Foundation (PCF) (M.L.). G.Z. is a recipient of the DoD Idea Development Award for New Investigators (PC150263) and a Claudia Adams Barr Award in Innovative Cancer Research from the Dana-Farber Cancer Institute. The rapid autopsy material is the result of work supported by resources by the DoD (Award W81XWH-14-2-0183), the Pacific Northwest Prostate Cancer Specialized Programs of Research Excellence (SPORE) (Grant P50CA97186), and the Institute for Prostate Cancer Research. L. M.B. is supported by a Future Fellowship from the Australian Research Council (Fellowship FT130101004) and grant support from the Movember Foundation/ PCF of Australi

    Data from Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer

    No full text
    Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC–driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer
    corecore