252 research outputs found

    Diagnostic accuracy of blood B-cell subset profiling and autoimmunity markers in Sjögren's syndrome.

    Get PDF
    International audienceThe aims of this study were to evaluate the diagnostic accuracy of blood B-cell subset profiling and immune-system activation marker assays in primary Sjögren's syndrome (pSS) and to assess whether adding these tools to the current laboratory item would improve the American-European Consensus Group (AECG) criteria. METHODS: In a single-center cohort of patients with suspected pSS, we tested the diagnostic performance of anti-SSA, antinuclear antibody (ANA), rheumatoid factor (RF), gammaglobulins, IgG titers, and B-cell ratio defined as (Bm2 + Bm2')/(eBm5 + Bm5), determined using flow cytometry. The reference standard was a clinical diagnosis of pSS established by a panel of experts. RESULTS: Of 181 patients included in the study, 77 had pSS. By logistic regression analysis, only ANA ≥1:640 (sensitivity, 70.4%; specificity 83.2%) and B-cell ratio ≥5 (sensitivity, 52.1%; specificity, 83.2%) showed independent associations with pSS of similar strength. In anti-SSA-negative patients, presence of either of these two criteria had 71.0% sensitivity but only 67.3% specificity for pSS; whereas combining both criteria had 96.2% specificity but only 12.9% sensitivity. Adding either of these two criteria to the AECG criteria set increased sensitivity from 83.1% to 90.9% but decreased specificity from 97.1% to 85.6%, whereas adding both criteria in combination did not substantially modify the diagnostic performance of the criteria set. The adjunction of RF + ANA ≥1:320, as proposed in the new American College of Rheumatology (ACR) criteria, did not improve the diagnostic value of anti-SSA. CONCLUSIONS: Blood B-cell subset profiling is a simple test that has good diagnostic properties for pSS. However, adding this test, with or without ANA positivity, does not improve current classification criteria

    Indication of activated senescence pathways in the temporal arteries of patients with giant cell arteritis

    Get PDF
    OBJECTIVES: Giant cell arteritis (GCA) affects almost exclusively individuals above 50 years old, suggesting a role of aging-related changes such as cellular senescence in its pathobiology. p21 WAF1/CIP1 and p16/INK4A play key roles in two distinct pathways leading to senescence. The proinflammatory molecules Interleukin (IL)-6 and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), which are key components of the senescence-associated secretory phenotype (SASP), are effective targets of treatment in GCA. Here, we aim to investigate the presence of p21 and p16 positive cells producing these SASP cytokines in temporal artery biopsies (TABs) of patients with GCA.METHODS: Eight patients with GCA and 14 age-matched, non-GCA individuals who underwent a TAB were included. Immunohistochemical staining of p21, p16, IL-6 and GM-CSF was performed. Multiplex immunofluorescent staining was performed to investigate the colocalization of p21 and p16 with IL-6, GM-CSF, and immune cell markers (CD68, CD3, CD20).RESULTS: p16, p21, IL-6 and GM-CSF were elevated in the TABs of patients with GCA. Both p16 and p21 expressing cells were mainly found near the internal lamina elastica, especially among giant cells and macrophages, although p21 and p16 expression could be found in all three layers of the vessels. Expression of p16 and p21 was occasionally found in T cells but not B cells. p16+ and p21+ cells expressing GM-CSF/IL-6 were detected throughout the TABs.CONCLUSION: Our data suggests the presence of activated senescence pathways at the site of vascular inflammation in GCA and support further research into the role of senescence in the pathophysiology of GCA. This article is protected by copyright. All rights reserved.</p

    Genome-wide whole blood transcriptome profiling in a large European cohort of systemic sclerosis patients

    Get PDF
    Objectives The analysis of annotated transcripts from genome-wide expression studies may help to understand the pathogenesis of complex diseases, such as systemic sclerosis (SSc). We performed a whole blood (WB) transcriptome analysis on RNA collected in the context of the European PRECISESADS project, aiming at characterising the pathways that differentiate SSc from controls and that are reproducible in geographically diverse populations. Methods Samples from 162 patients and 252 controls were collected in RNA stabilisers. Cases and controls were divided into a discovery (n=79+163; Southern Europe) and validation cohort (n=83+89; Central-Western Europe). RNA sequencing was performed by an Illumina assay. Functional annotations of Reactome pathways were performed with the Functional Analysis of Individual Microarray Expression (FAIME) algorithm. In parallel, immunophenotyping of 28 circulating cell populations was performed. We tested the presence of differentially expressed genes/pathways and the correlation between absolute cell counts and RNA transcripts/FAIME scores in regression models. Results significant in both populations were considered as replicated. Results Overall, 15 224 genes and 1277 functional pathways were available; of these, 99 and 225 were significant in both sets. Among replicated pathways, we found a deregulation in type-I interferon, Toll-like receptor cascade, tumour suppressor p53 protein function, platelet degranulation and activation. RNA transcripts or FAIME scores were jointly correlated with cell subtypes with strong geographical differences; neutrophils were the major determinant of gene expression in SSc-WB samples. Conclusions We discovered a set of differentially expressed genes/pathways validated in two independent sets of patients with SSc, highlighting a number of deregulated processes that have relevance for the pathogenesis of autoimmunity and SSc.EU/EFPIA/Innovative Medicines Initiative Joint Undertaking PRECISESADS 115 56

    Circulating autoreactive proteinase 3(+) B cells and tolerance checkpoints in ANCA-associated vasculitis

    Get PDF
    BACKGROUND: Little is known about the autoreactive B cells in antineutrophil cytoplasmic antibody–associated (ANCA-associated) vasculitis (AAV). We aimed to investigate tolerance checkpoints of circulating antigen-specific proteinase 3–reactive (PR3(+)) B cells. METHODS: Multicolor flow cytometry in combination with bioinformatics and functional in vitro studies were performed on baseline samples of PBMCs from 154 well-characterized participants of the RAVE trial (NCT00104299) with severely active PR3-AAV and myeloperoxidase-AAV (MPO-AAV) and 27 healthy controls (HCs). Clinical data and outcomes from the trial were correlated with PR3(+) B cells (total and subsets). RESULTS: The frequency of PR3(+) B cells among circulating B cells was higher in participants with PR3-AAV (4.77% median [IQR, 3.98%–6.01%]) than in participants with MPO-AAV (3.16% median [IQR, 2.51%–5.22%]) and participants with AAV compared with HCs (1.67% median [IQR, 1.27%–2.16%], P < 0.001 for all comparisons), implying a defective central tolerance checkpoint in patients with AAV. Only PBMCs from participants with PR3-AAV contained PR3(+) B cells capable of secreting PR3-ANCA IgG in vitro, proving they were functionally distinct from those of participants with MPO-AAV and HCs. Unsupervised clustering identified subtle subsets of atypical autoreactive PR3(+) memory B cells accumulating through the maturation process in patients with PR3-AAV. PR3(+) B cells were enriched in the memory B cell compartment of participants with PR3-AAV and were associated with higher serum CXCL13 levels, suggesting an increased germinal center activity. PR3(+) B cells correlated with systemic inflammation (C-reactive protein and erythrocyte sedimentation rate, P < 0.05) and complete remission (P < 0.001). CONCLUSION: This study suggests the presence of defective central antigen-independent and peripheral antigen-dependent checkpoints in patients with PR3-AAV, elucidating the selection process of autoreactive B cells. TRIAL REGISTRATION: ClinicalTrials.gov NCT00104299. FUNDING: The Vasculitis Foundation, the National Institute of Allergy and Infectious Diseases of the NIH, and the Mayo Foundation for Education and Research

    A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome

    Get PDF
    There is currently no approved treatment for primary Sjögren's syndrome, a disease that primarily affects adult women. The difficulty in developing effective therapies is -in part- because of the heterogeneity in the clinical manifestation and pathophysiology of the disease. Finding common molecular signatures among patient subgroups could improve our understanding of disease etiology, and facilitate the development of targeted therapeutics. Here, we report, in a cross-sectional cohort, a molecular classification scheme for Sjögren's syndrome patients based on the multi-omic profiling of whole blood samples from a European cohort of over 300 patients, and a similar number of age and gender-matched healthy volunteers. Using transcriptomic, genomic, epigenetic, cytokine expression and flow cytometry data, combined with clinical parameters, we identify four groups of patients with distinct patterns of immune dysregulation. The biomarkers we identify can be used by machine learning classifiers to sort future patients into subgroups, allowing the re-evaluation of response to treatments in clinical trials

    Integrative epigenomics in Sjögren´s syndrome reveals novel pathways and a strong interaction between the HLA, autoantibodies and the interferon signature

    Get PDF
    Primary Sjögren's syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals

    Serum profiling identifies CCL8, CXCL13, and IL-1RA as markers of active disease in patients with systemic lupus erythematosus

    Get PDF
    IntroductionSystemic lupus erythematosus (SLE) is a clinically heterogeneous disease that presents a challenge for clinicians. To identify potential biomarkers for diagnosis and disease activity in SLE, we investigated a selected yet broad panel of cytokines and autoantibodies in patients with SLE, healthy controls (HC), and patients with other autoimmune diseases (AIDs).MethodsSerum samples from 422 SLE patients, 546 HC, and 1223 other AIDs were analysed within the frame of the European PRECISESADS project (NTC02890121). Cytokine levels were determined using Luminex panels, and autoantibodies using different immunoassays.ResultsOf the 83 cytokines analysed, 29 differed significantly between patients with SLE and HC. Specifically, CCL8, CXCL13, and IL-1RA levels were elevated in patients with active, but not inactive, SLE versus HC, as well as in patients with SLE versus other AIDs. The levels of these cytokines also correlated with SLE Disease Activity Index 2000 (SLEDAI-2K) scores, among five other cytokines. Overall, the occurrence of autoantibodies was similar across SLEDAI-2K organ domains, and the correlations between autoantibodies and activity in different organ domains were weak.DiscussionOur findings suggest that, upon validation, CCL8, CXCL13, and IL-1RA could serve as promising serum biomarkers of activity in SLE
    corecore