1,338 research outputs found

    Alien Registration- Cormier, Marie B. (Biddeford, York County)

    Get PDF
    https://digitalmaine.com/alien_docs/4604/thumbnail.jp

    Magmatic Subsidence of the East Pacific Rise (EPR) at 18˚14\u27S Revealed Through Fault Restoration of Ridge Crest Bathymetry

    Get PDF
    The fault restoration technique of De Chabalier and Avouac [1994] is applied to an ultra-highresolution bathymetry data set from the East Pacific Rise (EPR) at 18140S. Fault offsets are calculated and subtracted from the original seafloor bathymetry to examine the morphology of the unfaulted seafloor surface within an area encompassing the ridge axis 400 [1] 1600 m in dimension. The restored topography reveals a gently sloping seafloor 200 m wide, which slopes 5 inward toward the spreading axis. We attribute this inward sloping seafloor to subsidence within the axial trough due to subsurface magmatic deflation. The vertical deformation field extracted from the bathymetry is used to characterize the ridge axis fault population present in the area. Median fault throws (9 m for inward-facing and 8 m for outwardfacing faults) are comparable to values measured for nearby mature abyssal hill fault populations, suggesting a genetic link. However, median fault spacings (70 and 46 m) are an order of magnitude smaller, and estimated total extensional strain is 3[1]–4[1] greater than values measured for ridge flank faults. These differences indicate the axial fault population at 18140S cannot be rafted onto the ridge flanks to form abyssal hill faults without significant modification, presumably via volcanic burial. We attribute the dense faulting observed in this area to slip on axial fissures during subsidence of the crestal region. The surface subsidence of a volcanic edifice can be modeled in terms of volume change in the magma source reservoir and volume of magma withdrawn from the reservoir. Using the relationship derived for a sill-like magma body, we estimate that the axial depression at 18140S could represent magma withdrawal associated with a small number (4–22) of the frequent dike injection and eruption events required to build the upper crust during the evolution of the trough. The subsidence volumes represented by the axial topography at 18140S are a small percentage of the underlying upper crustal sections (3–4%), suggesting that only a minor mismatch between magma recharge and withdrawal from the axial melt lens during ongoing plate separation could account for this pronounced axial depression

    Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons

    Full text link
    As part of the R&D toward the production of high flux of polarised Gamma-rays we have designed and built a non-planar four-mirror optical cavity with a high finesse and operated it at a particle accelerator. We report on the main challenges of such cavity, such as the design of a suitable laser based on fiber technology, the mechanical difficulties of having a high tunability and a high mechanical stability in an accelerator environment and the active stabilization of such cavity by implementing a double feedback loop in a FPGA

    Pion-Xi correlations in Au-Au collisions at STAR

    Full text link
    We present pion-Xi correlation analysis in Au-Au collisions at sqrt(s_NN)= 200 GeV and sqrt(s_NN) = 62.4 GeV, performed using the STAR detector at RHIC. A Xi*(1530) resonance signal is observed for the first time in Au-Au collisions. Experimental data are compared with theoretical predictions. The strength of the Xi* peak is reproduced in the correlation function assuming that pions and Xis emerge from a system in collective expansion.Comment: To appear in the proceedings of 18th Nuclear Physics Division Conference of the EPS (NPDC18),Prague, 23.8.-29.8. 200

    Inclusive pi0 spectra at high transverse momentum in d-Au collisions at RHIC

    Full text link
    Preliminary results on inclusive neutral pion production in d-Au collisions at sqrt(s_NN) = 200 GeV in the pseudo-rapidity range 0<eta<1 are presented. The measurement is performed using the STAR Barrel Electromagnetic calorimeter (BEMC). In this paper, the analysis of the first BEMC hadron measurement is described and the results are compared with earlier RHIC findings. The pi0 invariant differential cross sections show good agreement with next-to-leading order (NLO) perturbative QCD calculations.Comment: 4 pages, 5 figures, 18th Nuclear Physics Division Conference of the EPS, Prague, submitted to Nucl. Phys.

    Evidence for widespread creep on the flanks of the Sea of Marmara transform basin from marine geophysical data

    Get PDF
    "Wave" fields have long been recognized in marine sediments on the flanks of basins and oceans in both tectonically active and inactive environments. The origin of "waves" (hereafter called undulations) is controversial; competing models ascribe them to depositional processes, gravity-driven downslope creep or collapse, and/or tectonic shortening. Here we analyze pervasive undulation fields identified in swath bathymetry and new high-resolution multichannel seismic (MCS) reflection data from the Sea of Marmara, Turkey. Although they exhibit some of the classical features of sediment waves, the following distinctive characteristics exclude a purely depositional origin: (1) parallelism between the crests of the undulations and bathymetric contours over a wide range of orientations, (2) steep flanks of the undulations (up to ∼40°), and (3) increases in undulations amplitude with depth. We argue that the undulations are folds formed by gravity-driven downslope creep that have been augmented by depositional processes. These creep folds develop over long time periods (≥0.5 m.y.) and stand in contrast to geologically instantaneous collapse. Stratigraphic growth on the upslope limbs indicates that deposition contributes to the formation and upslope migration of the folds. The temporal and spatial evolution of the creep folds is clearly related to rapid tilting in this tectonically active transform basin
    corecore